Vapor-assisted self-conversion of basic carbonates in metal-organic frameworks.

Nanoscale

Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, P.R. China.

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Incorporation of nanoparticles has been considered as an efficient method for enhancing the adsorption performance of metal-organic frameworks (MOFs). Alkali metal compounds possess outstanding affinity to acidic CO2. In this study, a robust self-conversion strategy is reported for improving the carbon capture performance of MOFs, through directly transforming partial metal centers to basic carbonate (BC) nanoparticles. Based on the hydrolysis of coordination bonds induced by water impurity in solvents and the decarboxylation of linkers under thermal and alkaline conditions, the self-loading of BC in MOFs can be realized by solvent vapor-assisted thermal treatment. Since water impurity causes limited self-conversion and excess organic solvent can purify MOFs, the BC-MOF materials maintain good crystallinity and even show superior porosity. Owing to the increased specific surface areas, open metal sites, and alkalinity of BC, the prepared MOF composites exhibit substantially improved CO2 capture performance with good balance between capacity and selectivity. For example, after self-conversion with ethanol solvent, the CO2 adsorption capacity and CO2/N2 (15 : 85) selectivity at 298 K and 100 kPa increase from 3.7 mmol g-1 and 11.4 to 5.8 mmol g-1 and 29.2, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr07700cDOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
8
capture performance
8
water impurity
8
mmol g-1
8
vapor-assisted self-conversion
4
self-conversion basic
4
basic carbonates
4
carbonates metal-organic
4
frameworks incorporation
4
incorporation nanoparticles
4

Similar Publications

Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.

View Article and Find Full Text PDF

Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.

View Article and Find Full Text PDF

Excessive fossil fuel combustion has accelerated renewable energy development, with hydrogen energy emerging as a promising alternative due to its high energy density and environmental compatibility. Photocatalytic hydrogen production through solar energy conversion represents a viable approach for sustainable development. Metal-organic frameworks (MOFs) have garnered significant research interest owing to their structural tunability, well-defined catalytic sites, and post-synthetic modification capabilities.

View Article and Find Full Text PDF

Multilayer metal-organic frameworks-based artificial cytoskeleton for boosting immunosensors performance.

Biosens Bioelectron

September 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China. Electronic address:

Artificial cytoskeletons are constructed to study the structure and function of eukaryotic cells. Metal-organic frameworks (MOFs) provide a strong foundation for the construction of artificial cytoskeleton by encapsulating enzyme, yet challenges such as random enzyme distribution and poor catalytic efficiency, impede the development of artificial cytoskeleton technologies. Herein, a multilayer MOFs-based programmable artificial cytoskeleton was constructed through a heterogeneous interfacial growth method, utilizing hierarchical encapsulation of enzymes to facilitate tandem biocatalytic reactions.

View Article and Find Full Text PDF

The development of sensors for monitoring breath acetone, a key biomarker for ketosis in diabetes mellitus, represents a critical frontier in medical diagnostics, promising a painless alternative to invasive blood tests. This review provides a comprehensive and critical evaluation of the state-of-the-art in acetone gas sensing technologies, including chemiresistive, optical, electrochemical, conductometric, and microwave platforms. We focus specifically on recent breakthroughs driven by advanced materials, analyzing how novel nanostructures from two-dimensional (2D) materials such as MXenes to porous metal-organic frameworks (MOFs) are engineered to push performance to clinically relevant parts-per-billion (ppb) sensitivity.

View Article and Find Full Text PDF