98%
921
2 minutes
20
In this study, a solidified self-nanoemulsifying drug delivery system (solidified SNEDDS) and surface-modified microspheres were developed for enhancing the oral bioavailability of carvedilol. Based on the aqueous solubility test, liquid SNEDDS was composed of Peceol™ (oil), Tween® 80 (surfactant), and Labrasol® (co-surfactant) at a weight ratio of 25/50/25, generating the smallest nanoemulsion droplet size. Then, carvedilol was added to liquid SNEDDS and spray-dried with Aerosil® to fabricate the solidified SNEDDS. Surface-modified microspheres were manufactured using copovidone (polymer) and Tween® 80 (surfactant) according to aqueous solubility test results. The proper ratio of copovidone and Tween® 80 was determined based on the solubility and dissolution test. Both prepared formulations and carvedilol powder were compared using four different criteria: physicochemical characteristics, solubility, dissolution, and oral bioavailability. For solidified SNEDDS, carvedilol was encapsulated in liquid SNEDDS and absorbed to the Aerosil® surface, leading to the conversion from a crystalline to an amorphous state. However, the drug maintained its crystal form in the surface-modified microspheres. Round and even-sized particles were attached to the rough surfaces of drug, suggesting that hydrophilic carriers adhered to the hydrophobic drug. All formulations significantly improved drug solubility, dissolution, plasma concentrations, C, and AUC compared to carvedilol powder. The parameters were ranked in the following order: solidified SNEDDS > surface-modified microspheres > carvedilol powder. As a result, different solubility-increasing mechanisms provided differences in performance. For carvedilol, the formation of a nano-emulsion in solidified SNEDDS resulted in an efficient supersaturated state, leading to improved solubility (~6.1 fold), dissolution (~1.8 fold), and oral bioavailability (~1.4 fold) that was superior to the hydrophilic microenvironment in surface-modified microspheres.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2021.120377 | DOI Listing |
Sci Rep
July 2025
University of Bahr el Ghazal, Freedom Street, Wau, 91113, South Sudan.
To improve the solubility of atorvastatin and overcome the stability issues of liquid nanoemulsion, the current study aimed to synthesize solidified SNEDDS particles with aerodynamic diameter of ≤ 3 μm. The simple and chitosan-decorated liquid SNEDDS were dried by spray drying method and evaluated for their physicochemical properties, release characteristics and aerodynamic performance. A single dose pharmacokinetic study was performed in rabbits to establish the therapeutic performance of solidified nanoemulsion with respect to LIPITOR.
View Article and Find Full Text PDFPharm Dev Technol
July 2025
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
This study developed a hydroxypropyl methylcellulose acetate succinate (HPMCAS)-functionalized supersaturated self-nanoemulsifying drug delivery system (HPMCAS-SNEDDS@BA) to address the poor solubility and bioavailability of baicalin (BA), a flavonoid with anti-colitis efficacy. The formulation was systematically optimized through solubility screening, emulsification efficiency evaluation, and pseudo-ternary phase diagram analysis. Central composite design-response surface methodology (CCD-RSM) was employed to identify the optimal SNEDDS@BA composition, followed by HPMCAS ratio optimization based on supersaturation maintenance in biorelevant media.
View Article and Find Full Text PDFPharm Dev Technol
April 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
Self nano-emulsifying drug delivery system (SNEDDS) has been widely used to enhance dissolution and bioavailability of glibenclamide (GB). In addition, black seed oil, containing bioactive thymoquinone (TQ), showed promising antihyperglycemic effect. Therefore, this work aims to design solid SNEDDS formulation loaded with Black seed oil and GB.
View Article and Find Full Text PDFJ Pharm Sci
February 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, POBOX-2457, Riyadh 11451, Kingdom of Saudi Arabia; Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia. Electronic address: m
Background And Purpose: Liquid self-nanoemulsifying drug delivery systems (SNEDDS) face challenges related to stability, handling, and storage. In particular, lipophilic and unstable drugs, such as ramipril (RMP) and thymoquinone (THQ), face challenges in oral administration due to poor aqueous solubility and chemical instability. This study aimed to develop and optimize multi-layer self-nanoemulsifying pellets (ML-SNEP) to enhance the stability and dissolution of ramipril (RMP) and thymoquinone (THQ).
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.
View Article and Find Full Text PDF