Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microstructure and mechanical properties of novel Ni-20Co-12Cr superalloys, with and without Nb addition, were systematically studied during long-term thermal exposure. With increased exposure time, the average diameter of the γ' precipitates increased in both alloys in succession; this is more obviously observed in alloy containing 1 wt% Nb (1Nb). It is suggested that Nb increased the γ' coarsening rate by accelerating the diffusion of Al and Nb in γ matrix. In addition, the γ' phase fraction is increased by about 4% in 1Nb compared to the alloy without Nb (0Nb). The morphology of the γ' phase changed from near-spherical to cuboidal shape during exposure in both alloys. Due to the increased γ/γ' lattice misfit by Nb addition, 1Nb alloy showed an earlier tendency of shape change. Vickers hardness results revealed that the overall hardness decreased with the exposure time because the size increment of the γ' precipitate weakened the precipitates strengthening and Orowan strengthening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866981PMC
http://dx.doi.org/10.3390/ma14030656DOI Listing

Publication Analysis

Top Keywords

microstructure mechanical
8
long-term thermal
8
thermal exposure
8
exposure time
8
γ' phase
8
exposure
5
increased
5
γ'
5
mechanical property
4
property novel
4

Similar Publications

Water resistance and hydration mechanism of phosphogypsum cemented paste backfill under composite curing agent modification.

Environ Res

September 2025

School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Safe and Green Mining of Metal Mines with Cemented Paste Backfill, National Mine Safety Administration, University of Science and Technology Beijing, Beijing 100083, Chi

Cemented paste backfill has made outstanding contributions to the large-scale consumption of phosphogypsum (PG), but poor water resistance significantly weakens the mechanical strength, promotes the leaching of total soluble phosphate (TP) and fluoride ions (F), and reduces its attractiveness in mine engineering. This research synthesized a curing agent (CA) using sodium methylsilicate, sodium silicate, and polyaluminum chloride (PAC). PG produced from Deyang Haohua Qingping Phosphate Mine Co.

View Article and Find Full Text PDF

Zn-Schiff Base Polymer Electrocatalytic HO Generation: Mechanistic Insights from Spectroscopy.

J Phys Chem Lett

September 2025

National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.

The production of HO via the two-electron pathway of ORR has been widely studied. We pioneered the use of a Zn-Schiff base conductive polymer nanorod as an electrocatalyst for HO production, leveraging the Schiff base's ability to enhance electron transfer and catalytic efficiency. This novel catalyst achieved an unprecedented >98% HO selectivity with >90% stability after 1000 h.

View Article and Find Full Text PDF

Metal matrix composites are widely employed in aerospace and marine engineering due to their excellent mechanical properties and chemical stability. However, their surfaces remain vulnerable to corrosion, icing, and mechanical wear, severely compromising long-term reliability in harsh environments. Inspired by natural superhydrophobic surfaces such as lotus leaves, functional interfaces with high water repellency and interfacial stability can be engineered through the synergistic design of hierarchical micro/nanostructures and low-surface-energy chemical modifications.

View Article and Find Full Text PDF

Densification-Related Optical and Photodetection Properties of Green-Synthesized MAPbI and MAPbI@Graphite Powders.

ACS Omega

September 2025

Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.

For photodetection applications using 3D hybrid perovskites (HPs), dense and thick films or compacted powders in wafer form are needed and generally require large amounts of HPs. HPs are also often combined with a graphene/carbon layer to improve their conductivity. Among HP synthesis methods, mechanosynthesis, a green synthesis method, provides a large amount of powders, which are furthermore easily densified in compact wafers due to their mechanical activation.

View Article and Find Full Text PDF

This article aims to explore the effects of salmon demineralized bone matrix (DBM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) on bone formation. Salmon DBM, with its high water absorption capacity, was used to construct a composite material with rhBMP-2 under pH 7.0 and optimal temperature conditions.

View Article and Find Full Text PDF