98%
921
2 minutes
20
Graphitic carbon-like material (GCM) derived from edible sugar under a nitrogen environment was applied as an adsorbent for the removal of anionic and cationic dyes (methyl orange, MO) and methylene blue (MB) from wastewater. The physico-chemical characterization of GCM was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The plate-like morphology with an average size of 50-100 nm was measured from the SEM images. The measured BET 'surface area and pore volume were 574 m2/g and 0.248 cm3/g, respectively with pore diameter (d), 1.8 47 (< 2 nm) indicates that the GCM classified as a microporous. The effects of dosage, pH, contact time and concentration on the adsorption of MB and MO onto GCM were studied to unveil the adsorption process. The experimental isotherm data concurred with the Langmuir isotherm model (R2 = 0.990) for MB, while the MO isotherm data concurred with Freundlich model (R2 = 0.995). The maximum adsorption capacity achieved from the Langmuir isotherm equation at 25 °C was 38.75 and 43.48 mg/g for MB and MO, respectively, which indicates that GCM is a suitable adsorbent for the adsorption of both anionic and cationic dyes. The kinetic study demonstrated that the adsorption of both dyes onto GCM was the pseudo-second-order diffusion kinetics. The thermodynamic parameters reveal the adsorption of both dyes was endothermic spontaneous through chemical interactions. The GCM was found to be a potential adsorbent for the removal of MB and MO from an aqueous solution.
Download full-text PDF |
Source |
---|
Environ Geochem Health
September 2025
Department of Chemistry, Government Arts College(A), Salem, Tamil Nadu, 636007, India.
A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
September 2025
Department of Chemistry, University of Toronto, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, L5L 1C6, Canada. Electronic address:
In 1987 Seelig and colleagues proposed that the phosphocholine headgroup of phosphatidylcholine behaved as a universal sensor of surface electrostatic charge, both cationic and anionic, in lipid bilayers (J. Seelig, P.M.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. Electronic address:
Glycolipids are key structural and functional components of biological membranes, yet their interfacial hydration behavior remains poorly understood. Here, we use vibrational heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy to probe the molecular structure of the air-water interface formed by monolayers of ohmline, a glycolipid bearing a lactose headgroup and carrying no formal charge. Upon electrolyte addition, we observe a striking reorientation of interfacial water and a reversal of the HD-SFG signal, indicative of apparent surface charging by an otherwise neutral headgroup.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States.
Ionic liquids (ILs) have been gaining increasing focus in a variety of applications including emerging electric-propulsion concepts. A quantitative understanding of how IL ions fragment during high-energy collisions with background gases is therefore essential for interpreting mass spectra, predicting ion lifetimes in plasma and vacuum environments, and designing IL-based technologies. This work uses molecular dynamics (MD) simulations with a reactive force field to numerically model the collision-induced dissociation (CID) of isolated ions (both positive and negative) and ion clusters (2:1 and 1:2 clusters) of the prototypical ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF), colliding with a nitrogen (N) molecule, exploring all possible fragmentation channels arising from the breaking of both ionic and covalent bonds at collision energies ranging from 10 electron volts (eV) to 100 electron volts (eV) in the laboratory frame.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
College of Chemistry and Molecular Sciences, Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, P. R. China.
The in-depth integration of gene regulation with protein modulation can enhance cellular information processing, yet it is significantly constrained by ineffective and complex protein-to-gene transduction strategies. Herein, we developed a simple protease-guided autocatalytic gene silencing platform named iPAD (intelligent peptide-programmed deoxyribonuclease) that converts the protease recognition events into versatile DNA readout signals by rationally designing a native protease-responsive cationic peptide (PP) to efficiently modulate the DNAzyme (Dz) activity. Without requiring additional chemical modifications, the multifunctional PP regulator consists simply of one cell-specific targeting peptide segment and two cationic peptide segments isolated by one protease-specific peptide substrate.
View Article and Find Full Text PDF