Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response.

Cell Host Microbe

Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China; Department of Laboratory Medicine and Department of Pediatric Infectious Diseases, Key Laboratory of Birt

Published: March 2021


Article Synopsis

  • The SARS-CoV-2 virus is constantly mutating, and researchers used various methods to study these mutations and their clinical relevance.
  • They found 35 significant variants, including one deletion (Δ500-532) in the Nsp1 region, which occurs in over 20% of samples and is linked to more severe disease symptoms.
  • This specific mutation has been identified in 37 countries and results in lower immune responses, suggesting its potential role in diagnosing and developing treatments for COVID-19.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The SARS-CoV-2 virus, the causative agent of COVID-19, is undergoing constant mutation. Here, we utilized an integrative approach combining epidemiology, virus genome sequencing, clinical phenotyping, and experimental validation to locate mutations of clinical importance. We identified 35 recurrent variants, some of which are associated with clinical phenotypes related to severity. One variant, containing a deletion in the Nsp1-coding region (Δ500-532), was found in more than 20% of our sequenced samples and associates with higher RT-PCR cycle thresholds and lower serum IFN-β levels of infected patients. Deletion variants in this locus were found in 37 countries worldwide, and viruses isolated from clinical samples or engineered by reverse genetics with related deletions in Nsp1 also induce lower IFN-β responses in infected Calu-3 cells. Taken together, our virologic surveillance characterizes recurrent genetic diversity and identified mutations in Nsp1 of biological and clinical importance, which collectively may aid molecular diagnostics and drug design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846228PMC
http://dx.doi.org/10.1016/j.chom.2021.01.015DOI Listing

Publication Analysis

Top Keywords

clinical
5
genomic monitoring
4
monitoring sars-cov-2
4
sars-cov-2 uncovers
4
uncovers nsp1
4
nsp1 deletion
4
deletion variant
4
variant modulates
4
modulates type
4
type interferon
4

Similar Publications

Rationale: Physicians sometimes encounter various types of gut feelings (GFs) during clinical diagnosis. The type of GF addressed in this paper refers to the intuitive sense that the generated hypothesis might be incorrect. An appropriate diagnosis cannot be obtained unless these GFs are articulated and inventive solutions are devised.

View Article and Find Full Text PDF

All-In-One Iontronic Sensing Aligner for High-Precision 3D Orthodontic Force Monitoring.

Adv Sci (Weinh)

September 2025

Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key

Clear aligners offer aesthetic and comfort advantages in orthodontics, yet their ability to deliver effective forces relies heavily on empirical judgment or large-scale optical scanning, lacking real-time quantitative evaluation. Integrating pressure sensors into aligners is a promising solution, but challenges in miniaturization, multi-dimensional sensing, measurement accuracy, and biocompatibility hinder clinical application. Here, an all-in-one Orthodontic Force Acquisition System (OFAS) is presented that enables real-time, 3D force monitoring using a cross-shaped iontronic sensing array and an origami-inspired, wireless battery-free readout circuit miniaturized for single-tooth placement.

View Article and Find Full Text PDF

Background: Chest radiography is often performed preoperatively as a common diagnostic tool. However, chest radiography carries the risk of radiation exposure. Given the uncertainty surrounding the utility of preoperative chest radiographs, physicians require systematically developed recommendations.

View Article and Find Full Text PDF

Self-Propelled Magnetic Micromotor-Functionalized DNA Tile System for Autonomous Capture of Circulating Tumor Cells in Clinical Diagnostics.

Adv Sci (Weinh)

September 2025

Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.

Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.

View Article and Find Full Text PDF