98%
921
2 minutes
20
The energy levels of hydrogen-like atomic systems can be calculated with great precision. Starting from their quantum mechanical solution, they have been refined over the years to include the electron spin, the relativistic and quantum field effects, and tiny energy shifts related to the complex structure of the nucleus. These energy shifts caused by the nuclear structure are vastly magnified in hydrogen-like systems formed by a negative muon and a nucleus, so spectroscopy of these muonic ions can be used to investigate the nuclear structure with high precision. Here we present the measurement of two 2S-2P transitions in the muonic helium-4 ion that yields a precise determination of the root-mean-square charge radius of the α particle of 1.67824(83) femtometres. This determination from atomic spectroscopy is in excellent agreement with the value from electron scattering, but a factor of 4.8 more precise, providing a benchmark for few-nucleon theories, lattice quantum chromodynamics and electron scattering. This agreement also constrains several beyond-standard-model theories proposed to explain the proton-radius puzzle, in line with recent determinations of the proton charge radius, and establishes spectroscopy of light muonic atoms and ions as a precise tool for studies of nuclear properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914124 | PMC |
http://dx.doi.org/10.1038/s41586-021-03183-1 | DOI Listing |
Langmuir
September 2025
School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
In the stable cone-jet regime, liquid usually presents the shape of a cone extended by a jet at its apex, with jet breakup yielding fine drops. The dynamics of the Taylor cone critically affect the stability of the jet and further determine the jet and/or drop size. In the present work, the morphology of the Taylor cone, cone length, and cone angle were studied through experimental and numerical means, where the operating parameters and liquid properties are considered.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.
A series of six quinary rare-earth sulfides CeEuNaSiS, CeEuKSiS, CeEuRbSiS, CeEuCsSiS, CeEuAgSiS, and CeEuCuSiS were obtained in an alkali iodide flux using the boron-chalcogen mixture (BCM) method. Single crystal X-ray diffraction was used to determine the structures of the high quality single crystals that were grown; their elemental compositions were confirmed by energy-dispersive spectroscopy (EDS). The compounds crystallize in the hexagonal crystal system in the noncentrosymmetric space group 6.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China.
Hydride superconductors have attracted significant attention, yet achieving superconductivity at ambient pressure remains a key challenge. Here, a family of high-T (superconducting critical temperature, T) hydrides based on the fluorite-type AXH structure, exhibiting thermodynamic and dynamic stability at low to atmospheric pressure, is proposed. Through comprehensive screening of 150 ternary systems, eight stable hydrides below 35 GPa are identified.
View Article and Find Full Text PDFACS Omega
August 2025
Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana 500078, India.
Invasive pneumococcal disease presents a threat to humankind, predominantly affecting children and the elderly. Despite the availability of high-valency pneumococcal polysaccharide vaccine of PPSV23 (PNEUMOVAX 23) and conjugate vaccines such as VAXNEUVANCE and PREVNAR 20, nonvaccine serotypes continue to contribute to higher mortality rates. The characterization of nonvaccine serotypes is becoming increasingly crucial considering an increase in their prevalence.
View Article and Find Full Text PDFSci Rep
August 2025
College of Mining, Liaoning Technical University, Fuxin, 123000, China.
When roadways in strong mine pressure working faces traverse collapse columns, the complex stress redistribution frequently induces surrounding rock instability and support structure failure. This study investigates the 2702 intake airway crossing the X26 collapse column (75.8 m wide) at Zhangcun Coal Mine through an integrated approach combining theoretical analysis, numerical modeling, and field validation.
View Article and Find Full Text PDF