Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Scope: Millet protein has received much attention due to its beneficial role in alleviating metabolic disease symptoms. This study aims to investigate the role and molecular mechanism of foxtail millet protein isolates, including protein isolates from raw and cooked foxtail millet in alleviating diabetes, including gut microbiota and intracellular signal pathways.

Methods And Results: Protein isolates from raw and cooked foxtail millet are orally administered to streptozotocin (STZ)-induced diabetic mice for 5 weeks before hypoglycemic effect evaluation. The results show that foxtail millet protein isolates improve glucose intolerance and insulin resistance in diabetic mice. However, only the protein isolate from cooked foxtail millet reverse the weight loss trend and alleviate lipid disorders in diabetic mice. Besides, 16S rRNA sequencing show that both raw and cooked foxtail millet protein isolates altered diabetes-induced gut dysbiosis. In addition, western blotting analysis indicated that the protein isolate from cooked foxtail millet increases the expression levels of glucagon-like peptide-1 receptor (GLP-1R), phosphoinositide 3-kinase (PI3K), and phosphoinositide-protein kinase B (p-AKT)/AKT while the protein isolate from raw foxtail millet downregulates stearoyl-coenzyme A desaturase 1 (SCD1) level.

Conclusion: Both raw and cooked foxtail millet protein isolates can exert hypoglycemic effects in diabetic mice through rewiring glucose homeostasis, mitigating diabetes-induced gut dysbiosis, and affecting the GLP-1R/PI3K/AKT pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.202000365DOI Listing

Publication Analysis

Top Keywords

foxtail millet
40
protein isolates
28
cooked foxtail
28
raw cooked
20
diabetic mice
20
millet protein
20
isolates raw
12
protein isolate
12
protein
11
millet
11

Similar Publications

Proteomic insights into lipid degradation and volatile compound changes during foxtail millet storage.

Food Chem

September 2025

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Center of Technology Innovation in Food Industry, China Agricultural University, China. Electronic address:

Foxtail millet quality deteriorates during storage, but the mechanisms behind aging-related changes are not fully understood. This study investigated lipid degradation and volatile compound changes in stored foxtail millets, employing proteomics to uncover underlying quality decline mechanisms. After 30 days, fatty acid contents increased, accompanied by a general coarser grain surface texture.

View Article and Find Full Text PDF

Liqueur koji-fermented foxtail millet beverages offer distinctive flavors and health benefits, but the interrelationships among flavor compounds, sensory properties, and antioxidant activity remain unelucidated. This study systematically mapped dynamic changes across a standardized 72 h fermentation using chromatographic, electronic sensory approaches, and antioxidant assays. Key results revealed glucose, lactic acid, and succinic acid as primary taste-active indicators through HPLC.

View Article and Find Full Text PDF

Structural and deleterious burdens and their effects on yield traits in foxtail millet domestication.

iScience

September 2025

Special Orphan Crops Research Center of the Loess Plateau, Ministry of Agriculture and Rural Affairs, College of Agriculture, Shanxi Agricultural University, Taigu 030801, China.

Crop domestication typically accumulates structural and deleterious variants through genetic bottlenecks and selection hitchhiking. However, the structural and deleterious variant burden has not been investigated in the foxtail millet (). Integrating comparative genomics, pangenomics, population genetics, and quantitative genetics, we identified 6,713 gene gains and 2,802 losses during domestication, affecting flowering time and developmental processes.

View Article and Find Full Text PDF

Our understanding of how photosynthetic capacity varies among C species and across growth and measurement conditions remains limited. We collated 1696 CO response curves of net CO assimilation rate (A/C curves) from C species grown and measured at various environmental conditions and used these data to estimate the apparent maximum carboxylation activity of phosphoenolpyruvate carboxylase (V) and CO-saturated net photosynthetic rate (A), two key parameters describing photosynthetic capacity. We examined how V and A vary with species-specific traits, growth and measurement conditions.

View Article and Find Full Text PDF

Efficient and fast water uptake by seeds, facilitated by optimal soil moisture, plays a critical role in timely germination and early seedling vigor for foxtail millet production in arid and semi-arid regions. The husk, as a unique structure through which the seed contacts the soil, plays an important role in water uptake and germination. Many foxtail millet germplasm accessions have papillae on the epidermis of their husks, yet the role of this trait in water uptake and germination, as well as the genetic basis and regulatory mechanism related to this trait, remain unknown.

View Article and Find Full Text PDF