Structural Damage Identification Based on Integrated Utilization of Inverse Finite Element Method and Pseudo-Excitation Approach.

Sensors (Basel)

State Key Laboratory of Structural Analysis for Industrial Equipment, School of Aeronautics and Astronautics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, China.

Published: January 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The attempt to integrate the applications of conventional structural deformation reconstruction strategies and vibration-based damage identification methods is made in this study, where, more specifically, the inverse finite element method (iFEM) and pseudo-excitation approach (PE) are combined for the first time, to give rise to a novel structural health monitoring (SHM) framework showing various advantages, particularly in aspects of enhanced adaptability and robustness. As the key component of the method, the inverse finite element method (iFEM) enables precise reconstruction of vibration displacements based on measured dynamic strains, which, as compared to displacement measurement, is much more adaptable to existing on-board SHM systems in engineering practice. The PE, on the other hand, is applied subsequently, relying on the reconstructed displacements for the identification of structural damage. Delamination zones in a carbon fibre reinforced plastic (CFRP) laminate are identified using the developed method. As demonstrated by the damage detection results, the iFEM-PE method possesses apparently improved accuracy and significantly enhanced noise immunity compared to the original PE approach depending on displacement measurement. Extensive parametric study is conducted to discuss the influence of a variety of factors on the effectiveness and accuracy of damage identification, including the influence of damage size and position, measurement density, sensor layout, vibration frequency and noise level. It is found that different factors are highly correlated and thus should be considered comprehensively to achieve optimal detection results. The application of the iFEM-PE method is extended to better adapt to the structural operational state, where multiple groups of vibration responses within a wide frequency band are used. Hybrid data fusion is applied to process the damage index (DI) constructed based on the multiple responses, leading to detection results capable of indicating delamination positions precisely.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829783PMC
http://dx.doi.org/10.3390/s21020606DOI Listing

Publication Analysis

Top Keywords

damage identification
12
inverse finite
12
finite element
12
element method
12
structural damage
8
pseudo-excitation approach
8
method ifem
8
displacement measurement
8
ifem-pe method
8
method
7

Similar Publications

Experimental study on identifying catastrophic failure in the brittle fracture process via multi-source acoustic characteristics.

Ultrasonics

September 2025

Faculty of Land Resource Engineering, Kunming University of Science and Technology, Yunnan 650093, China; Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People's Republic of China, Yunnan Province, Kunming, Yunnan

Identifying and predicting the catastrophic failure of brittle rock remains a challenging task, yet it is crucial for developing early warning systems and preventing dynamic rock hazards. In this study, we employed the propagative parameters of ultrasonic waves and information from acoustic emission (AE) events to characterize the brittle failure of a flawed sandstone sample under uniaxial compression. A sliding event window method was developed to obtain the temporal b-value, effectively revealing microcrack growth based on the frequency-magnitude distribution of AE events.

View Article and Find Full Text PDF

The present investigation elucidates the therapeutic potential of glycyrrhizin, the predominant triterpene saponin isolated from (licorice), in the management of systemic lupus erythematosus (SLE), an autoimmune disorder characterized by multisystemic involvement and therapeutic recalcitrance. Comprehensive interrogation of multiple disease-specific databases facilitated the identification of crucial SLE-associated molecular targets and hub genes, with MAPK1, MAPK3, TP53, JUN, and JAK2 demonstrating the highest degree of network centrality. Subsequent molecular docking simulations and binding affinity assessments revealed compounds with exceptional complementarity to these pivotal molecular targets, establishing as a pharmacologically promising botanical source and glycyrrhizin as its principal bioactive constituent meriting comprehensive mechanistic investigation.

View Article and Find Full Text PDF

Unlabelled: Methicillin-resistant (MRSA) is a leading cause of endovascular infections, where interactions with endothelial cells play a critical role in pathogenesis. Gp05, a prophage-encoded protein, has previously been implicated in promoting antibiotic persistence by modulating MRSA cellular physiology and evading neutrophil-mediated killing. In this study, we investigated the role of Gp05 in MRSA-endothelial cell interactions, focusing on its impact on bacterial adhesion, invasion, cytotoxicity, and the host inflammatory response.

View Article and Find Full Text PDF

Background: Despite progress in serum biomarker research, reliable tools for early diagnosis and patient stratification in multiple sclerosis (MS) remain limited. This study uses proteomic profiling in untreated MS patients to identify early disease-associated biomarkers.

Methods: We conducted an unbiased proteomic screen to capture broad serum protein expression profiles in a well-characterized discovery sample: 7 relapsing remitting MS (RRMS), 7 secondary progressive MS (SPMS), 4 with primary progressive MS (PPMS) alongside 6 healthy controls (HC).

View Article and Find Full Text PDF

Diagnostic bones can aid in identification and size determination of fishes from ingested prey, archaeological remains or damaged specimens. We extracted diagnostic structures, including cleithra, dentaries, opercles and otoliths, from juvenile spring Chinook salmon (Oncorhynchus tshawytscha) from three distinct groups: hatchery, naturally produced and surrogate, representing shared genetics. Although our observations highlight that growth and life history are important considerations in structuring allometry, we note that a wide variety of diagnostic bones and measurement axes may be suitable for determining body lengths where remains may be damaged or incomplete.

View Article and Find Full Text PDF