Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: To investigate the feasibility of intracranial pressure (ICP) monitoring after traumatic brain injury (TBI) by electromagnetic coupling phase sensing, we established a portable electromagnetic coupling phase shift (ECPS) test system and conducted a comparison with invasive ICP.

Methods: TBI rabbits' model were all synchronously monitored for 24 h by ECPS testing and invasive ICP. We investigated the abilities of the ECPS to detect targeted ICP by feature extraction and traditional classification decision algorithms.

Results: The ECPS showed an overall downward trend with a variation range of - 13.370 ± 2.245° as ICP rose from 11.450 ± 0.510 mmHg to 38.750 ± 4.064 mmHg, but its change rate gradually declined. It was greater than 1.5°/h during the first 6 h, then decreased to 0.5°/h and finally reached the minimum of 0.14°/h. Nonlinear regression analysis results illustrated that both the ECPS and its change rate decrease with increasing ICP post-TBI. When used as a recognition feature, the ability (area under the receiver operating characteristic curve, AUCs) of the ECPS to detect ICP ≥ 20 mmHg was 0.88 ± 0.01 based on the optimized adaptive boosting model, reaching the advanced level of current noninvasive ICP assessment methods.

Conclusions: The ECPS has the potential to be used for noninvasive continuous monitoring of elevated ICP post-TBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812649PMC
http://dx.doi.org/10.1186/s12883-021-02049-3DOI Listing

Publication Analysis

Top Keywords

electromagnetic coupling
12
coupling phase
12
intracranial pressure
8
traumatic brain
8
brain injury
8
phase sensing
8
ecps detect
8
change rate
8
icp post-tbi
8
icp
7

Similar Publications

Transient electronics that can degrade after fulfilling their designed functionalities offer transformative potentials in biomedical implants (eliminating secondary surgeries), ecofriendly consumer electronics (reducing e-waste), and secure systems. However, the development of reliable transient energy supplies remains a critical challenge, thus limiting their widespread implementation. Among various solutions, wireless power supplies via near-field inductive coupling stand out as particularly promising candidates.

View Article and Find Full Text PDF

Mercury(II) ions (Hg) are one of the most common and highly toxic heavy metal ions, which can contaminate the environment and damage the human health. Therefore, the precise detection of trace Hg concentration is particularly important. Herein, gold nanoparticles-enhanced silver-coated hollow fiber (HF) surface plasmon resonance (SPR) sensor was developed for the highly sensitive detection of Hg ions.

View Article and Find Full Text PDF

Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.

View Article and Find Full Text PDF

Design and Fabrication of Microsphere-Based Micro/Nano Structures for Efficient Electromagnetic Modulation and Absorption.

Small

September 2025

Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Coatings for Advanced Equipment College of Smart Materials and Future Energy, Fudan University, Shanghai, 200438, P. R. China.

The development of high-performance electromagnetic (EM) absorption materials is pivotal in addressing EM pollution. Such absorption materials enable flexible modulation of EM performance, which has become an important focal point of recent research. Among various EM absorption materials, microsphere-based micro/nano materials exhibit extremely high stability and remarkable attributes for modulating their EM performance.

View Article and Find Full Text PDF

Background: Painful spasticity in the shoulder is a debilitating condition that significantly impairs quality of life. Conservative treatments often fail to provide adequate relief, leaving patients with limited therapeutic options.

Case Report: A retrospective study was conducted on 8 patients treated with the permanent Freedom® Peripheral Nerve Stimulator (PNS) System at the suprascapular nerve (SN) for painful shoulder spasticity.

View Article and Find Full Text PDF