Effects of plastic particles on germination and growth of soybean (Glycine max): A pot experiment under field condition.

Environ Pollut

State Key Laboratory of Soil Erosion and Dryland Arming on the Loess Plateau, and College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Water Use Efficiency in Dryland Area, Institute of Dryland Farming, Gansu Agriculture Academy of Scienc

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plastic residues have become a serious environmental problem in areas where agricultural plastic film are used intensively. Although numerous of studies have been done to assess its impacts on soil quality and crop yields, the understanding of meso-plastic particles effects on plant is still limited. In this study, low density polyethylene (PE) and biodegradable plastic (Bio) mulch film were selected to study the effects of meso-plastic debris on soybean germination and plant growth with the accumulation levels of 0%, 0.1%, 0.5% and 1% in soil (w: w, size ranging 0.5-2 cm) by a pot experiment under field condition. Results showed that the germination viability of soybean seeds was reduced to 82.39%, 39.44% and 26.06% in the treatments with 0.1%, 0.5% and 1% added plastic debris compared to the control (CK), respectively, suggesting that plastic residues in soil inhibit the viability of soybean seed germination. The plastic debris had a significant negative effect on plant height and culm diameter during the entire growth stage of soybean. Similarly, the leaf area at harvest was reduced by 1.97%, 6.86% and 11.53% compared to the CK in the treatments with 0.1%, 0.5% and 1% plastic debris addition, respectively. In addition, the total plant biomass under plastic addition was reduced in both the flowering and harvesting stages, compared to the CK. For the different type of plastic residues, plant height, leaf area and root/shoot ratio at group PE were significantly lower than those of groups treated by Bio. In conclusion, PE debris had a greater negative effects on plant height, culm diameter, leaf area and root/shoot ratio while Bio debris mainly showed the adverse effects on germination viability and root biomass especially at the flowering stage. Therefore, further research is required to elaborate plastic particles' effects on different stages of crops and soil quality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.116418DOI Listing

Publication Analysis

Top Keywords

plastic residues
12
01% 05%
12
plastic debris
12
plant height
12
leaf area
12
plastic
10
pot experiment
8
experiment field
8
field condition
8
soil quality
8

Similar Publications

The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.

View Article and Find Full Text PDF

Latent fingermark recovery in a simulated café setting: an exploratory study of cyanoacrylate fuming on disposable nonporous plastic and semiporous paper cups.

Sci Justice

September 2025

Department of Police Administration, Daegu University, PO Box 38453, Daegu, South Korea; Department of Policing & Security, Rabdan Academy, PO Box 114646, Abu Dhabi, United Arab Emirates. Electronic address:

Latent fingermark recovery from beverage containers is an important aspect of forensic investigations, yet the influence of substrate properties and beverage temperatures on fingermark development remains understudied. This exploratory study assessed the development and quality of latent fingermarks on disposable beverage cups made of nonporous plastic and semiporous paper using cyanoacrylate (CA) fuming, under conditions approximating a typical café environment. A total of 255 cups (107 plastic, 148 paper) were collected after participants consumed hot and iced beverages in a controlled classroom setting.

View Article and Find Full Text PDF

Lactylation as a metabolic-epigenetic nexus in epilepsy: Mechanisms and therapeutic implications.

Neurobiol Dis

September 2025

Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, Guizhou, PR China; Key Laboratory of Brain Function and Brain Disease Prevention and Treatment of Guizhou Province, Zunyi 563000, Guizhou, PR China; The Collaborative Innovation Center of Tis

Lactylation is a novel post-translational modification (PTM) mediated by lactate, which dynamically regulates protein functions and gene expression by covalently attaching lactate groups to lysine residues. Recent studies have shown that abnormal lactate metabolism not only contributes to the pathogenesis of epilepsy through microenvironment acidification but also influences neuroinflammation, energy metabolism imbalance, neurotransmitter dysregulation, synaptic plasticity, and epigenetic regulation via lactylation. This positions lactylation as a critical metabolic-epigenetic intersection in the pathological mechanisms of epilepsy.

View Article and Find Full Text PDF

Dental waste, including metal, plastic, and chemical residues, and high energy and water consumption, significantly contribute to environmental degradation. This review highlights the environmental impact of common dental materials and practices, such as amalgam, resin composites, and disposable plastics. The aim is to examine current evidence, emphasizing mercury pollution, microplastic release, and biomedical waste handling.

View Article and Find Full Text PDF

Design and Fabrication of Flexible Silk Fibroin/Lanthanide Ion Membranes with Multifunctional Properties of Fluorescence, Humidity Sensitivity, and Conductivity.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing

Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.

View Article and Find Full Text PDF