Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article elaborates on the life cycle assessment (LCA) protocol designed for formulating the life cycle inventories (LCIs) of fruit and vegetable (F&V) supply chains. As a set of case studies, it presents the LCI data of the processed vegetable products, (a) potato: chips, frozen-fries, and dehydrated flakes, and (b) tomato-pasta sauce. The data can support to undertake life cycle impact assessment (LCIA) of food commodities in a "cradle to grave" approach. An integrated F&V supply chain LCA model is constructed, which combined three components of the supply chain: farming system, post-harvest system (processing until the consumption) and bio-waste handling system. We have used numbers of crop models to calculate the crop yields, crop nutrient uptake, and irrigation water requirements, which are largely influenced by the local agro-climatic parameters of the selected crop reporting districts (CRDs) of the United States. For the farming system, LCI information, as shown in the data are averaged from the respective CRDs. LCI data for the post-harvest stages are based on available information from the relevant processing plants and the engineering estimates. The article also briefly presents the assumptions made for evaluating future crop production scenarios. Future scenarios integrate the impact of climate change on the future productivity and evaluate the effect of adaptation measures and technological advancement on the crop yield. The provided data are important to understand the characteristics of the food supply chain, and their relationships with the life cycle environmental impacts. The data can also support to formulate potential environmental mitigation and adaptation measures in the food supply chain mainly to cope with the adverse impact of climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749376PMC
http://dx.doi.org/10.1016/j.dib.2020.106639DOI Listing

Publication Analysis

Top Keywords

life cycle
20
supply chain
16
lci data
12
cycle assessment
8
fruit vegetable
8
f&v supply
8
data support
8
farming system
8
impact climate
8
climate change
8

Similar Publications

Potato bolters are caused by excision of a transposon from the StCDF1.3 allele, resulting in a somatic mutant with late maturity. Somatic mutations during vegetative propagation can lead to novel genotypes, known as sports.

View Article and Find Full Text PDF

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF

Crowding can result in greater disease transmission, yet crowded hosts may also remove infectious propagules from the environment, thereby lowering the encounter rate and infectious dose received by conspecifics. We combined experimental and modelling work to examine the impact of crowding of butterfly larvae on the per-capita risk of infection by a protozoan that is transmitted via the larval food plant, and the resulting infection load in adult butterflies. We reared larvae at different densities and exposed them to low and high doses of parasites.

View Article and Find Full Text PDF

Theoretical and empirical considerations suggest that relatedness can have complex effects on social life. While high relatedness may promote sibling cooperation and altruism through indirect fitness benefits, it can also intensify competition if siblings share similar needs and competitive strategies. Moreover, low genetic diversity in highly related groups may heighten susceptibility to pathogens.

View Article and Find Full Text PDF

Effects of chicken manure-derived black soldier fly organic fertilizer on soil carbon and nitrogen cycling: insights from metagenomic and microbial network analysis.

Environ Res

September 2025

National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China. Electronic address: cmm114@mail

Black soldier fly (BSF) organic fertilizer is known to enhance soil fertility and promote plant growth. However, its effects on soil carbon (C) and nitrogen (N) cycling remains unclear. In this study, we established a BSF chicken manure bioconversion system to produce BSF organic fertilizer and investigate its impacts on soil C and N cycling, as well as microbial ecological networks through metagenomic analysis.

View Article and Find Full Text PDF