98%
921
2 minutes
20
Objective: To investigate changes in the level of protein in serum and uncover the underlying pathogenesis of abnormal uterine bleeding (AUB) associated with copper intrauterine devices (Cu IUD).
Methods: Protein profiles were investigated via tandem mass tag (TMT)-based quantitative proteomics and bioinformatics technology. Quantification and characterization of candidate proteins were further performed in 33 controls and 45 cases by Luminex assay and enzyme-linked immunosorbent assay.
Results: In total, 842 proteins were identified via TMT coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the serum of individuals with IUDs. Among them, 25 differentially expressed proteins (p < 0.05) were observed, including eight upregulated proteins and 17 downregulated proteins. Ten proteins were verified, and Alpha-1-Antitrypsin (a1AT) had a significantly elevated expression in women with AUB associated with the Cu IUD compared with healthy controls (p = 0.026) and a high area under the curve value (0.656), as well as sensitivity (64.9%) and specificity (71.9%).
Conclusion: This is the first study to explore changes in serum protein and the underlying mechanisms of AUB associated with the Cu IUD via TMT technology. a1AT with biomarker potential was validated. These findings might provide an experimental basis for the early diagnosis or treatment of AUB associated with the Cu IUD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijgo.13562 | DOI Listing |
J Proteome Res
September 2025
Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, United States.
Retinol binding protein 4 (RBP4), the circulating carrier of retinol, complexes with transthyretin (TTR) and is a potential biomarker of cardiometabolic disease. However, RBP4 quantitation relies on immunoassays and Western blots without retinol and TTR measurement. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous absolute quantitation of circulating RBP4 and TTR is critical to establishing their biomarker potential.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
Adulterated yohimbine (YHB) in food poses a risk to public health, making it imperative to develop fast and sensitive detection methods. In this study, computational-chemistry-based prediction was employed to design YHB haptens for generating the high-affinity monoclonal antibody Yohi-4A7, which exhibited an optimal half-inhibitory concentration (IC) of 1.69 ng/mL against YHB.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China.
Purpose: The fourth most common cause of cancer-related deaths in women is cervical cancer. Though treatment of early-stage cervical cancer is often effective, middle and advanced stage cervical cancer is hard to treat and prone to recurrence. We sought to explore the mechanism underlying cervical cancer progression to identify new therapeutic approaches.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.
Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).
Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.
Front Endocrinol (Lausanne)
September 2025
State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University, Third Hospital, Beijing, China.
Objective: This study explores the metabolic profiles in the peripheral blood of infertile patients with adenomyosis (ADM) to identify key metabolites affecting pregnancy outcomes in these patients undergoing frozen embryo transfer (FET). Our goal is to create a metabolite-based clinical prediction model for pregnancy outcomes in adenomyosis-associated infertility.
Methods: This prospective cohort study from the Reproductive Center at Peking University Third Hospital enrolled 94 infertile patients with adenomyosis and control (CTRL) patients undergoing FET.