98%
921
2 minutes
20
Background And Aims: Inflammatory bowel disease pharmacotherapy, despite substantial progress, is still not satisfactory for both patients and clinicians. In view of the chronic and relapsing disease course and not always effective treatment with adverse effects, attempts to search for new, more efficient, and safer substances are essential and reasonable. This study was designed to elucidate the impact of cornelian cherry iridoid-polyphenolic extract (CE) and loganic acid (LA) on adherent-invasive . growth and adhesion and to assess the effect of pretreatment with CE or LA on the course of intestinal inflammation in rat experimental colitis compared with sulfasalazine.
Methods: Antibacterial and antiadhesive activities of CE and LA were assessed using microdilution, Int407 cell adherence, and yeast agglutination assays. The colitis model was induced by 2,4,6-trinitrobenzenesulfonic acid. Studied substances were administered intragastrically for 16 days prior to colitis induction. Body weight loss; colon index; histological injuries; IL-23, IL-17, TNF-, and chemerin levels; and STAT3, Muc2, and TFF3 mRNA expression were evaluated.
Results: Only CE exerted antimicrobial and antiadhesive activities and alleviated colonic symptoms. CE coadministrated with sulfasalazine was more effective than single compounds in reversing increased concentrations of TNF-, IL-17, and chemerin and decreased Muc2 mRNA expression.
Conclusions: CE exerted a protective effect against experimental colitis via impaired mucosal epithelial barrier restoration and intestinal inflammatory response attenuation and given concomitantly with sulfasalazine counteracted colitis in a more effective way than sulfasalazine alone, which indicates their synergistic interaction. The beneficial effect of CE may also be due to its bacteriostatic and antiadhesive activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7707999 | PMC |
http://dx.doi.org/10.1155/2020/7697851 | DOI Listing |
ACS Appl Bio Mater
September 2025
School of Textile Science and Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China.
The problem of hospital-acquired infections arising from inadequate antimicrobial and antibiofilm performance in medical textiles is an increasingly urgent threat to public health. The dual strategy combining superhydrophobic surfaces with aPDT exhibits potent antibacterial efficacy and barely triggers the risk of antimicrobial resistance, but still encounters significant challenges, including intricate fabrication methods and narrow spectral absorption of single-photosensitizer (PS) systems. A superhydrophobic-photodynamic dual antimicrobial polyester fabric is developed herein for medical applications to address these challenges.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
Postoperative peritoneal adhesion, driven by inflammatory response and fibrotic deposition, remains the most common complication following abdominal surgeries, with limited effective solutions. Herein, a dual-network hydrogel patch (GPSB) is developed for effective peritoneal adhesion prevention through interpenetrating a gelatin network with a zwitterionic polysulfobetaine (PSB) network. The biodegradable gelatin network is dynamically crosslinked zinc ion (Zn)-polyphenol coordination, endowing the patch with inherent antibacterial and pro-healing activities.
View Article and Find Full Text PDFRSC Adv
August 2025
Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax P.O. Box 1177 3018 Sfax Tunisia.
Numerous studies have demonstrated the antiproliferative potential of copper-based nanoparticles (Cu-based NPs) in antibacterial and anticancer applications. This study investigates how thermal annealing influences the structural, optical, and antibacterial properties of Cu-based NPs. X-ray diffraction (XRD) analysis revealed a monoclinic CuSO(OH) phase for the as-prepared powder, and monoclinic CuO phase after annealing, alongside a notable increase in crystallite size from 8.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China. Electronic address:
The Janus adhesive wound dressings exhibit properties analogous to human skin. Specifically, they must possess both adhesive and non-adhesive characteristics to function effectively. The adhesive property ensures secure attachment to the wound site, while the non-adhesive side acts as a protective barrier against external contaminants.
View Article and Find Full Text PDFMicroorganisms
August 2025
Department of Botany and Microbiology, Faculty of Science, Benha University, Benha 13518, Egypt.
The escalating global challenges of antimicrobial resistance (AMR) and cancer necessitate innovative therapeutic solutions from natural sources. This study investigated the multifaceted therapeutic potential of pigment-enriched plant extracts. We screened diverse plant extracts for antimicrobial and antibiofilm activity against multidrug-resistant bacteria and fungi.
View Article and Find Full Text PDF