Late endosomes promote microglia migration via cytosolic translocation of immature protease cathD.

Sci Adv

Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China. xia

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Organelle transport requires dynamic cytoskeleton remodeling, but whether cytoskeletal dynamics are, in turn, regulated by organelles remains elusive. Here, we demonstrate that late endosomes, a type of prelysosomal organelles, facilitate actin-cytoskeleton remodeling via cytosolic translocation of immature protease cathepsin D (cathD) during microglia migration. After cytosolic translocation, late endosome-derived cathD juxtaposes actin filaments at the leading edge of lamellipodia. Suppressing cathD expression or blocking its cytosolic translocation impairs the maintenance but not the initiation of lamellipodial extension. Moreover, immature cathD balances the activity of the actin-severing protein cofilin to maintain globular-actin (G-actin) monomer pool for local actin recycling. Our study identifies cathD as a key lysosomal molecule that unconventionally contributes to actin cytoskeleton remodeling via cytosolic translocation during adenosine triphosphate-evoked microglia migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725477PMC
http://dx.doi.org/10.1126/sciadv.aba5783DOI Listing

Publication Analysis

Top Keywords

cytosolic translocation
20
microglia migration
12
late endosomes
8
migration cytosolic
8
translocation immature
8
immature protease
8
cytoskeleton remodeling
8
remodeling cytosolic
8
cathd
6
cytosolic
5

Similar Publications

Neuroinflammation and neuronal death are direct consequences of persistent microglial activation observed in many chronic neurological conditions. Activated microglia impact neuronal cells by releasing proinflammatory cytokines and inflammatory mediators, leading to neuronal damage and neurodegeneration. To investigate whether Polyinosinic polycytidylic acid (poly I:C), a synthetic double-stranded RNA molecule, induces neuroinflammation and neuronal death, we exposed microglia (HMC-3 cells) to poly I: C for 24 hrs, and assessed inflammatory cytokines.

View Article and Find Full Text PDF

Hippo signaling is a conserved regulator of tissue homeostasis across metazoans. The Ste20 family kinase Hippo/MST activates the NDR family kinase Warts/LATS to inhibit the transcriptional coactivator Yorkie/YAP/TAZ and its transcription factor partner Scalloped/TEAD. In , cell lineages and organ sizes are largely invariant, and classical Hippo phenotypes such as tissue overgrowth are absent.

View Article and Find Full Text PDF

S100A16 knockdown reduces RPN2 expression and inhibits β-catenin/TCF signaling, leading to suppressed metastasis in cervical cancer cells.

Biochim Biophys Acta Mol Cell Res

September 2025

Department of Obstetrics and Gynecology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan; Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, Taiwan. Electronic address:

S100 calcium-binding protein A16 (S100A16), the most recently identified member of the S100 calcium-binding protein family, has been implicated in various cancers. However, its specific role in cervical cancer remains unclear. In this study, we demonstrated that silencing the S100A16 gene inhibits the migratory ability of HeLa and SiHa cells without affecting their viability.

View Article and Find Full Text PDF

Alpha-Synuclein (αSyn), a hallmark protein of synucleinopathies such as Parkinson's disease, is likely to be involved in neuronal membrane trafficking and synaptic vesicle dynamics at axon terminals. Its specific binding to anionic phospholipids, such as phosphatidylinositol phosphates (PIPs) that are essential for intracellular signaling and membrane trafficking, suggests an involvement in vesicular transport processes. In Saccharomyces cerevisiae, a model organism for cell biological PD research, human αSyn localises to the plasma membrane via the secretory machinery.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a life-threatening condition with high morbidity and mortality, characterized by inflammation linked to organelle stress. Despite its clinical significance, effective therapies remain limited. While organelle dysfunction is recognized as a driver of inflammation in AKI, the role of inter-organelle communication in this process remains poorly understood.

View Article and Find Full Text PDF