Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report the design of a bifunctional metal-organic layer (MOL), Hf -Ru-Co, composed of [Ru(DBB)(bpy) ] [DBB-Ru, DBB=4,4'-di(4-benzoato)-2,2'-bipyridine; bpy=2,2'-bipyridine] connecting ligand as a photosensitizer and Co(dmgH) (PPA)Cl (PPA-Co, dmgH=dimethylglyoxime; PPA=4-pyridinepropionic acid) on the Hf secondary building unit (SBU) as a hydrogen-transfer catalyst. Hf -Ru-Co efficiently catalyzed acceptorless dehydrogenation of indolines and tetrahydroquinolines to afford indoles and quinolones. We extended this strategy to prepare Hf -Ru-Co-OTf MOL with a [Ru(DBB)(bpy) ] photosensitizer and Hf SBU capped with triflate as strong Lewis acids and PPA-Co as a hydrogen transfer catalyst. With three synergistic active sites, Hf -Ru-Co-OTf competently catalyzed dehydrogenative tandem transformations of indolines with alkenes or aldehydes to afford 3-alkylindoles and bisindolylmethanes with turnover numbers of up to 500 and 460, respectively, illustrating the potential use of MOLs in constructing novel multifunctional heterogeneous catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202011519DOI Listing

Publication Analysis

Top Keywords

three synergistic
8
synergistic active
8
active sites
8
metal-organic layers
4
layers hierarchically
4
hierarchically integrate
4
integrate three
4
sites tandem
4
tandem catalysis
4
catalysis report
4

Similar Publications

Indocyanine green (ICG) is a well-established near-infrared dye which has been used clinically for several decades. Recently, it has been utilised for fluorescence-guided surgery in a range of solid cancer types, including sarcoma, with the aim of reducing the positive margin rate. The increased uptake and retention of ICG within tumours, compared with normal tissue, gives surgeons a visual reference to aid resection when viewed through a near-infrared camera.

View Article and Find Full Text PDF

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

Radiation exposure initiates a cascade of reactions, including the release of reactive oxygen species, DNA double-strand breaks, and cellular apoptosis, leading to cell death, tissue damage, and potentially the development of cancer. Consequently, there is an urgent need to develop highly effective and low-toxicity radioprotective agents. Traditional chemically synthesized protective agents face significant limitations in clinical applicability due to their pronounced off-target toxicity, narrow therapeutic window, and high production costs.

View Article and Find Full Text PDF

This study utilized integrated sensory-guided, machine learning, and bioinformatics strategies identify umami-enhancing peptides from , investigated their mechanism of umami enhancement, and confirmed their umami-enhancing properties through sensory evaluations and electronic tongue. Three umami-enhancing peptides (APDGLPTGQ, SDDGFQ, and GLGDDL) demonstrated synergistic/additive effects by significantly enhancing umami intensity and duration in monosodium glutamate (MSG). Furthermore, molecular docking showed that these umami-enhancing peptides enhanced both the binding affinity and interaction forces between MSG and the T1R1/T1R3 receptor system, thereby enhancing umami perception.

View Article and Find Full Text PDF

Graphene/mesoporous carbon/ZIF-derived carbon heterostructures interface-reinforced assembly for capacitive energy storage.

Chem Commun (Camb)

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

We report the synthesis of three-dimensional (3D) graphene/mesoporous carbon/ZIF-derived microporous carbon (G/MC/ZDC-A) heterostructures through an interface-reinforced assembly. This hierarchical architecture synergistically integrates 2D graphene nanosheets with 0D ZDC nanoparticles a mesoporous carbon "binder", effectively mitigating the agglomeration issue while establishing continuous charge transport pathways. When configurated as symmetric supercapacitors with EMIMBF electrolyte, the obtained G/MC/ZDC-A demonstrates decent capacitive performance: a high specific capacitance (240 F g at 0.

View Article and Find Full Text PDF