98%
921
2 minutes
20
The variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.0c02696 | DOI Listing |
J Am Chem Soc
September 2025
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China.
Electrocatalytic CO reduction (eCOR) under acidic conditions is the game changer of resourceful CO utilization owing to the alleviated carbon loss but faces severe competition from the hydrogen evolution reaction (HER) that greatly curtails the electric current efficiency. Leveraging the eCOR side of the teeterboard calls for a fundamental understanding of the triphasic electrode process involving a complex arrangement of electric double layers (EDLs). Herein, a series of model catalysts with tailored cavernous parameters are fabricated to geometrically and spectroscopically decipher the competing HER and eCOR processes that engage different proton sources.
View Article and Find Full Text PDFJ Inorg Biochem
August 2025
Faculty of Chemistry, University of Wroclaw, F. Joliot - Curie 14, 50-383 Wroclaw, Poland.
This study presents the synthesis, structural characterization, and biological evaluation of three nickel(II) complexes containing bioactive ligands: two bidentate pyridyl alcohols (2-pymetH and 2-pyetH) and a mixed-ligand system with memantine and acetylacetone. Single-crystal X-ray diffraction revealed that all complexes adopt a distorted octahedral geometry with a {NiN₂O₄} coordination core, differing in ligand orientation, symmetry, and supramolecular packing. Complementary spectroscopic techniques, including FT-IR, Raman, and UV-Vis, confirmed successful ligand coordination and complex integrity.
View Article and Find Full Text PDFInt J Cosmet Sci
September 2025
Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, Puebla, Mexico.
Objective: To assess the impact of anionic surfactants on the formation of coacervates with cationic guar gum and their subsequent effects on hair care.
Methods: Coacervates were prepared using ionic precipitation techniques involving four anionic surfactants: sodium lauryl sulfate (SLS), sodium lauroyl sarcosinate (SNL), sodium lauryl sulfoacetate (SLSA), sodium cocoyl isethionate (SCI) and cationic guar gum. Viscosity, spreadability and stickiness sensory analysis were conducted with a panel of volunteers.
Anal Chim Acta
October 2025
State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China. Electronic address:
Raman spectroscopy has attracted significant attention in various biochemical detection fields, especially in the rapid identification of pathogenic bacteria. The integration of this technology with deep learning to facilitate automated bacterial Raman spectroscopy diagnosis has emerged as a key focus in recent research. However, the diagnostic performance of existing deep learning methods largely depends on a sufficient dataset, and in scenarios where there is a limited availability of Raman spectroscopy data, it is inadequate to fully optimize the numerous parameters of deep neural networks.
View Article and Find Full Text PDFChemSusChem
September 2025
Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China.
The electrochemical reduction of CO to CH offers a promising pathway for renewable energy storage, yet remains limited by sluggish kinetics, poor catalyst stability, and competing hydrogen evolution reactions (HER). Herein, a host-guest strategy is reported for engineering metal-organic frameworks (MOFs) through the encapsulation of conductive polymers to stabilize reticular skeletons and regulate interfacial water for efficient CO-to-CH conversion. Specifically, polypyrrole (PPy) and polyaniline (PANI) are confined within Cu-anchored UiO-67 frameworks, resulting in hybrid catalysts-PPy@Cu-UiO-67 and PANI@Cu-UiO-67-with preserved crystallinity and enhanced electronic conductivity.
View Article and Find Full Text PDF