Effects of electrostatic drag on the velocity of hydrogen migration - pre- and post-transition state enthalpy/entropy compensation.

Phys Chem Chem Phys

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ab initio molecular dynamics calculations were used to explore the underlying factors that modulate the velocity of hydrogen migration for 1,2 hydrogen shifts in carbocations in which different groups interact noncovalently with the migrating hydrogen. Our results indicate that stronger electrostatic interactions between the migrating hydrogen and nearby π-systems lead to slower hydrogen migration, an effect tied to entropic contributions from the hydrogen + neighboring group substructures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp05000hDOI Listing

Publication Analysis

Top Keywords

hydrogen migration
12
velocity hydrogen
8
migrating hydrogen
8
hydrogen
7
effects electrostatic
4
electrostatic drag
4
drag velocity
4
migration pre-
4
pre- post-transition
4
post-transition state
4

Similar Publications

Ionization of alkanes to form radical cations activates their otherwise unreactive C-H bonds, facilitating important chemical processes such as hydrocarbon cracking. This work investigates the radical cation dissociation dynamics of hexane (CH) structural isomers by using femtosecond time-resolved mass spectrometry and quantum chemical calculations. All five isomers exhibit competition between the yields of fragment ions arising from direct C-C bond cleavage or dissociative rearrangement with hydrogen migration on dynamical time scales of ∼50-300 fs, suggesting that hydrogen migration in the metastable cations operates on such short time scales.

View Article and Find Full Text PDF

Sacha inchi shell extract (SISE), whose main active substance is a polysaccharide, has been reported to have hypotensive effects. Consequently, a novel acidic arabinogalactan, termed SISP, was isolated from SISE, and its efficacy in protecting vascular endothelial cells was investigated. SISP had a molecular weight of 57.

View Article and Find Full Text PDF

Polyphenolic nanodots loaded multi-layer MXene for strong, tough and rapidly biodegradable polyvinyl alcohol/starch nanocomposites with self-healing ability and improved aging resistance.

Carbohydr Polym

November 2025

Key Lab of Guangdong Province for High Property and Functional Polymer Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Inspired by spider silk, polyphenolic nanodots (PTa) loaded multi-layer MXene (mMXene-PTa) through hydrogen and coordination bonds was prepared by self-polymerizing tannic acid on mMXene and used as a new crosslinker for polyvinyl alcohol (PVA). Together with starch (ST), mMXene-PTa was compounded with PVA and exfoliated to fabricate PVA/ST/mMXene-PTa nanocomposite. The phenolic hydroxyl groups in PTa formed high-density H-bonds with PVA and ST, creating an organic-inorganic dynamic crosslinking network with mMXene-PTa as nodes.

View Article and Find Full Text PDF

Dendrobium officinale Kimura et Migo regulates the proliferation and migration of colon adenocarcinoma via LGALS4.

Mol Divers

September 2025

Department of General Practice, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing Three Gorges Medical College, No. 27, Guoben Road, Wanzhou District, Chongqing, 404197, China.

Dendrobium officinale Kimura et Migo (DO) has demonstrated potential anti-colon adenocarcinoma (COAD) effects; however, its underlying mechanisms of action require further elucidation. In this study, DO (work concentrations of 0, 0.1, and 0.

View Article and Find Full Text PDF

Zinc ions coordinated carboxymethyl chitosan hydrogel doped with ellagic acid for accelerative diabetic wound healing.

Int J Biol Macromol

September 2025

Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou Medical University, Guangzhou 510620, China. Electronic address:

Diabetic wound healing remains a critical clinical challenge due to persistent inflammation derived from long-term hyperglycemia. To address this challenge, we reported a zinc ion coordinated CMCS hydrogel for pH responsive delivery of ellagic acid to fulfill diabetic wound management. The incorporation of zinc ions and EA reinforce the hydrogel network via coordination and hydrogen bonding, and confer a pH-responsive release of EA under simulative wound microenvironment.

View Article and Find Full Text PDF