98%
921
2 minutes
20
Fibrosis is a common pathological feature of chronic disease. Deletion of the NF-κB subunit c-Rel limits fibrosis in multiple organs, although the mechanistic nature of this protection is unresolved. Using cell-specific gene-targeting manipulations in mice undergoing liver damage, we elucidate a critical role for c-Rel in controlling metabolic changes required for inflammatory and fibrogenic activities of hepatocytes and macrophages and identify Pfkfb3 as the key downstream metabolic mediator of this response. Independent deletions of Rel in hepatocytes or macrophages suppressed liver fibrosis induced by carbon tetrachloride, while combined deletion had an additive anti-fibrogenic effect. In transforming growth factor-β1-induced hepatocytes, c-Rel regulates expression of a pro-fibrogenic secretome comprising inflammatory molecules and connective tissue growth factor, the latter promoting collagen secretion from HMs. Macrophages lacking c-Rel fail to polarize to M1 or M2 states, explaining reduced fibrosis in Rel mice. Pharmacological inhibition of c-Rel attenuated multi-organ fibrosis in both murine and human fibrosis. In conclusion, activation of c-Rel/Pfkfb3 in damaged tissue instigates a paracrine signalling network among epithelial, myeloid and mesenchymal cells to stimulate fibrogenesis. Targeting the c-Rel-Pfkfb3 axis has potential for therapeutic applications in fibrotic disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116435 | PMC |
http://dx.doi.org/10.1038/s42255-020-00306-2 | DOI Listing |
Sci Transl Med
September 2025
Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
Hepatocyte apoptosis is a key feature of metabolic dysfunction-associated steatohepatitis (MASH), but the fate of apoptotic hepatocytes in MASH is poorly understood. Here, we explore the hypotheses that clearance of dead hepatocytes by liver macrophages (efferocytosis) is impaired in MASH because of low expression of the efferocytosis receptor T cell immunoglobulin and mucin domain containing 4 (TIM4; gene ) by MASH liver macrophages, which then drives liver fibrosis in MASH. We show that apoptotic hepatocytes accumulate in human and experimental MASH, using mice fed the fructose-palmitate-cholesterol (FPC) diet or the high-fat, choline-deficient amino acid-defined (HF-CDAA) diet.
View Article and Find Full Text PDFCell Mol Immunol
September 2025
Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
Gut-derived metabolites are essential for liver fibrogenesis. The aim of this study was to determine the alteration of indole-3-propionic acid (IPA), a crucial tryptophan metabolite, in liver fibrosis and delineate the roles of enterogenic IPA in fibrogenesis. In the present study, metabolomics assays focused on tryptophan metabolism were applied to explore the decreased levels of IPA in the feces and serum of cirrhotic patients, as well as in the feces and portal vein serum of fibrotic mice.
View Article and Find Full Text PDFAgeing Res Rev
September 2025
Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
Body-brain interaction (BBI) plays a critical role in coordinating the communication between peripheral organs and the brain, contributing to the comorbidity of metabolic disorders and neurological disorders. In the context of obesity, one of the key mediators driving systemic and neuroinflammatory responses is the soluble form of tumor necrosis factor (TNF), which primarily signals through TNF receptor 1 (TNFR1) to regulate inflammation and cell death. In this review, we examine how TNF/TNFR1-mediated metabolic inflammation in obesity disrupts cellular homeostasis across multiple organ systems, including the brain.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Laboratorio de Endocrinología Molecular (LEM), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Paraguay 2155, 5th Floor, Buenos Aires C1121ABG, Argentina.
Kupffer cells (KCs) play a pivotal role in the progression of metabolic-associated steatohepatitis (MASH). This study evaluated the impact of short-term KC depletion induced by gadolinium chloride (GdCl) in a rat model of MASH. The intervention with GdCl effectively reduced KC markers CD68 and Clec4f, together with pro-inflammatory cytokines (IL-1β, TNFα, NOS2), without affecting anti-inflammatory markers (IL-10, MRC1).
View Article and Find Full Text PDFMol Biotechnol
September 2025
Department of Medical Biotechnology, Saveetha School of Engineering, Institute of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India.
Alcoholic liver disorder (ALD) is one of the most prevalent hepatic ailments worldwide, with oxidative stress and inflammation playing a vital role in disease progression. The current study intended to assess the anti-inflammatory nature of Hamamelitannin (HAM), a gallotannin from Hamamelis virginiana barks, which was predicted to possess anti-inflammatory properties based on in-silico docking analysis. To further explore its effects, we examined the therapeutic effect of HAM against ethanol-mediated inflammation using an in-vivo zebrafish larvae model.
View Article and Find Full Text PDF