98%
921
2 minutes
20
Although TP53 is the most commonly mutated gene in human cancers, the p53-dependent transcriptional programs mediating tumor suppression remain incompletely understood. Here, to uncover critical components downstream of p53 in tumor suppression, we perform unbiased RNAi and CRISPR-Cas9-based genetic screens in vivo. These screens converge upon the p53-inducible gene Zmat3, encoding an RNA-binding protein, and we demonstrate that ZMAT3 is an important tumor suppressor downstream of p53 in mouse Kras-driven lung and liver cancers and human carcinomas. Integrative analysis of the ZMAT3 RNA-binding landscape and transcriptomic profiling reveals that ZMAT3 directly modulates exon inclusion in transcripts encoding proteins of diverse functions, including the p53 inhibitors MDM4 and MDM2, splicing regulators, and components of varied cellular processes. Interestingly, these exons are enriched in NMD signals, and, accordingly, ZMAT3 broadly affects target transcript stability. Collectively, these studies reveal ZMAT3 as a novel RNA-splicing and homeostasis regulator and a key component of p53-mediated tumor suppression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654708 | PMC |
http://dx.doi.org/10.1016/j.molcel.2020.10.022 | DOI Listing |
Eur Urol
September 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Provincial Key Laboratory of Gynecological Oncology, Shenyang, China. Electronic address:
Anal Chim Acta
November 2025
Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, 10000, Viet Nam. Electronic address:
Background: Recent advancements in cancer therapeutics have catalyzed the development of noninvasive treatment modalities, including the utilization of fluorescent chemotherapeutic agents. These agents offer dual functionality, enabling targeted drug delivery, real-time tumor imaging, and personalized therapy monitoring. Such capabilities are instrumental in the progression toward more precise and effective cancer interventions.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, USA.
Immunotherapy, including immune checkpoint blockade, CART cells and bispecific antibodies have resulted in dramatic improvements in outcomes for patients with hematological malignancies, demonstrating the unique potency of the immune system in targeting malignant cells. The development of cancer vaccines aims to evoke an activated effector cell population and a memory response to provide long term immune surveillance to protect from relapse. Developing a potent cancer vaccine relies on identifying appropriate antigen targets, enhancing antigen presentation, and overcoming the immune suppressive milieu of the micro-environment.
View Article and Find Full Text PDFBest Pract Res Clin Haematol
September 2025
Department of Hematology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China. Electronic address:
Multiple myeloma (MM) is a malignant disease in which clonal plasma cells proliferate abnormally. In patients with MM, the number and function of NK cells are suppressed, resulting in reduced immune surveillance and clearance of myeloma cells. Restoring or enhancing the killing effect of NK cells on myeloma cells is an important strategy for MM immunotherapy.
View Article and Find Full Text PDFToxicol Appl Pharmacol
September 2025
Department of Radiation Oncology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China. Electronic address:
Triple-negative breast cancer (TNBC) was a highly aggressive and metastatic subtype of breast cancer characterized by a poor prognosis and limited treatment options. Clarifying the underlying molecular mechanisms was of significant clinical importance. In this study, we We plotted Kaplan-Meier survival curves based on data from the Human Cancer Database and found that elevated CYPJ expression increased patient mortality risk and decreased survival rates.
View Article and Find Full Text PDF