98%
921
2 minutes
20
Aim: The waiver of bioequivalence (BE) studies is well accepted for Biopharmaceutics Classification System (BCS) class I drugs in form of immediate-release solid oral products. This study aimed to assess whether the rapid dissolution profiles (≥85% in 30 min) was crucial to guarantee bioequivalence of isosorbide mononitrate (ISMN) and then established a clinically relevant dissolution specification (CRDS) for screening BE or non-BE batches.
Method: A physiologically based pharmacokinetic (PBPK) model was constructed by integrating clinical and non-clinical data by BO simulator. The model was verified by an actual clinical study (NMPA registration number: CTR20191360) with 28 healthy Chinese subjects. Then a virtual BE study was simulated to evaluate the bioequivalence of 7 virtual batches of ISMN tablets with different dissolution profiles, and the CRDS was established by integrating the results.
Result: The simulated PK behavior of ISMN was comparable to the observed. Even though the batches with slower dissolution were not equivalent to a rapid dissolution profile (≥85% in 30 min), it was demonstrated these batches would exhibit the similar in vivo performance. Meanwhile, the in vitro dissolution specification time point and the percentage of drug release (75% in 45 min) proved to have clinical relevance.
Conclusion: The virtual BE simulation by integrating in vitro dissolution profiles into the PBPK model provided a powerful tool for screening formulations, contributing to gaining time and reducing costs in BE evaluations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2020.105618 | DOI Listing |
Turk J Pharm Sci
September 2025
University of Maryland, Department of Pharmaceutical Sciences, Baltimore, USA.
Objectives: Norvir oral powder [ritonavir (RTV)] employs polyvinylpyrrolidone/vinyl acetate as the polymer to formulate an amorphous solid dispersion. Its oral absolute bioavailability is 70% in the fasted state, and it has negative food effects. The aim of this study was to perform in vitro dissolution of Norvir powder and Wagner-Nelson deconvolution of data under fasted, moderate fat, and high fat conditions in order to elucidate the relevance of dissolution testing.
View Article and Find Full Text PDFTurk J Pharm Sci
September 2025
Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Punjab.
Objectives: Lycopene is a powerful antioxidant with diverse health benefits. However, it belongs to the Biopharmaceutics Classification System II; thus, it depicts poor water solubility and dissolution. Its lipophilic nature hinders the bioavailability of this drug.
View Article and Find Full Text PDFClin Ther
September 2025
Avadel Pharmaceuticals, Chesterfield, Missouri.
Purpose: Narcolepsy is a chronic neurologic disorder characterized by excessive daytime sleepiness (EDS) and can occur with or without cataplexy. Once-nightly sodium oxybate (ON-SXB) is approved for the treatment of cataplexy or EDS in patients 7 years of age or older with narcolepsy. ON-SXB contains both immediate-release and pH-dependent, controlled-release granules designed to be reconstituted in water and administered orally once at bedtime.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Marwadi University Research Center, Faculty of Pharmacy, Marwadi University, Rajkot, Gujarat, India.
Background: Cystic fibrosis (CF) is a systemic disease which primarily affects pulmonary system, but also extends to different important organs to cause multitude of associated diseases, leading to rise in rate of morbidity and mortality. The present investigation is focused on the development and optimization of SLN (Solid Lipid Nanoparticles) formulation of IVF (Ivacaftor) for effective treatment of cystic fibrosis.
Methods: IVF-SLN was formulated with the help of homogenization and ultrasonication methods by incorporating Labrasol as liquid lipid, Cetyl palmitate as solid lipid and Polysorbate 20 as the surfactant.
J Appl Polym Sci
August 2025
Department of Biomedical Engineering, University of Houston.
Recent advances in neural regeneration have demonstrated the importance of incorporating proteins into polymeric capsules to provide both topographical and biochemical cues to cells. Coaxial electrospinning has emerged as a versatile technique for embedding delicate bioactive agents within core-shell nanofibers, enabling controlled and sustained drug release. In this study, we employed a design-of-experiment approach to systematically investigate how controllable parameters in coaxial electrospinning influence the diameter and size distribution of aligned poly (ethylene oxide-poly(l-lactide-co-glycolide) nanofibers loaded with nerve growth factor (NGF).
View Article and Find Full Text PDF