Mimicking Antigen-Driven Asthma in Rodent Models-How Close Can We Get?

Front Immunol

Molecular Allergology/Vice President's Research Group, Paul-Ehrlich-Institut, Langen, Germany.

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Asthma is a heterogeneous disease with increasing prevalence worldwide characterized by chronic airway inflammation, increased mucus secretion and bronchial hyperresponsiveness. The phenotypic heterogeneity among asthmatic patients is accompanied by different endotypes, mainly Type 2 or non-Type 2. To investigate the pathomechanism of this complex disease many animal models have been developed, each trying to mimic specific aspects of the human disease. Rodents have classically been employed in animal models of asthma. The present review provides an overview of currently used Type 2 vs. non-Type 2 rodent asthma models, both acute and chronic. It further assesses the methods used to simulate disease development and exacerbations as well as to quantify allergic airway inflammation, including lung physiologic, cellular and molecular immunologic responses. Furthermore, the employment of genetically modified animals, which provide an in-depth understanding of the role of a variety of molecules, signaling pathways and receptors implicated in the development of this disease as well as humanized models of allergic inflammation, which have been recently developed to overcome differences between the rodent and human immune systems, are discussed. Nevertheless, differences between mice and humans should be carefully considered and limits of extrapolation should be wisely taken into account when translating experimental results into clinical use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7555606PMC
http://dx.doi.org/10.3389/fimmu.2020.575936DOI Listing

Publication Analysis

Top Keywords

airway inflammation
8
type non-type
8
animal models
8
disease
5
mimicking antigen-driven
4
asthma
4
antigen-driven asthma
4
asthma rodent
4
rodent models-how
4
models-how close
4

Similar Publications

Introduction: It is well known that Obstructive Sleep Apnea (OSA) is a complex disease characterized by an Upper Airway (UA) collapse during sleep, with potential consequences on ENT districts. Recent evidence suggests a possible association with Eustachian Tube Dysfunction (ETD). However, the potential effects of both surgical and non-surgical therapeutic strategies on ET function remain poorly explored in the current literature.

View Article and Find Full Text PDF

Chronic Obstructive Pulmonary Disease (COPD) is a prevalent chronic respiratory disorder characterized by airway inflammation and irreversible airflow limitation. Its marked heterogeneity and complexity pose significant challenges to traditional clinical assessments in terms of prognostic prediction and personalized management. In recent years, the exploration of biomarkers has opened new avenues for the precise evaluation of COPD, particularly through multi-biomarker prediction models and integrative multimodal data strategies, which have substantially improved the accuracy and reliability of prognostic assessments.

View Article and Find Full Text PDF

Utilizing biomaterials for laryngeal respiratory mucosal tissue repair in an animal model.

Biomater Biosyst

September 2025

ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

Introduction: The airway mucosa plays a crucial role in protection and various physiological functions. Current methods for restoring airway mucosa, such as myocutaneous flaps or split skin grafts, create a stratified squamous layer that lacks the cilia and mucus-secreting glands of the native columnar-lined airway. This study examines the application of various injectable biopolymers as active molecules for a potential approach to regenerating laryngeal epithelial tissue.

View Article and Find Full Text PDF

Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are common respiratory conditions that significantly impact patient health and contribute to substantial healthcare burdens. While conventional treatments offer symptom relief, many patients continue to experience persistent symptoms, side effects, or resistance to standard therapies. This highlights the growing need for novel, non-invasive, and sustainable therapeutic strategies to manage chronic airway inflammation.

View Article and Find Full Text PDF

Asthma is one of the most prevalent chronic respiratory illnesses, significantly impacting patients through shortness of breath and even death. Acute exacerbations are usually controlled with a short-acting beta agonist, such as an albuterol inhaler, as well as long-acting agents to prevent the occurrence of exacerbations and status asthmaticus. Status asthmaticus is an emergent episode of asthma that is refractory to standard treatment.

View Article and Find Full Text PDF