Decoding of voluntary and involuntary upper-limb motor imagery based on graph fourier transform and cross-frequency coupling coefficients.

J Neural Eng

Department of Mechanical Engineering and Automation, Northeastern University, Shenyang City, Liaoning, People's Republic of China.

Published: November 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Brain-computer interface (BCI) technology based on motor imagery (MI) control has become a research hotspot but continues to encounter numerous challenges. BCI can assist in the recovery of stroke patients and serve as a key technology in robot control. Current research on MI almost exclusively focuses on the hands, feet, and tongue. Therefore, the purpose of this paper is to establish a four-class MI BCI system, in which the four types are the four articulations within the right upper limbs, involving the shoulder, elbow, wrist, and hand.

Approach: Ten subjects were chosen to perform nine upper-limb analytic movements, after which the differences were compared in P300, movement-related potentials(MRPS), and event-related desynchronization/event-related synchronization under voluntary MI (V-MI) and involuntary MI (INV-MI). Next, the cross-frequency coupling (CFC) coefficient based on mutual information was extracted from the electrodes and frequency bands with interest. Combined with the image Fourier transform and twin bounded support vector machine classifier, four kinds of electroencephalography data were classified, and the classifier's parameters were optimized using a genetic algorithm.

Main Results: The results were shown to be encouraging, with an average accuracy of 93.2% and 92.2% for V-MI and INV-MI, respectively, and over 95% for any three classes and any two classes. In most cases, the accuracy of feature extraction using the proximal articulations as the basis was found to be relatively high and had better performance.

Significance: This paper discussed four types of MI according to three aspects under two modes and classed them by combining graph Fourier transform and CFC. Accordingly, the theoretical discussion and classification methods may provide a fundamental theoretical basis for BCI interface applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/abc024DOI Listing

Publication Analysis

Top Keywords

fourier transform
12
motor imagery
8
graph fourier
8
cross-frequency coupling
8
decoding voluntary
4
voluntary involuntary
4
involuntary upper-limb
4
upper-limb motor
4
imagery based
4
based graph
4

Similar Publications

The surfaces of 1D layered lepidocrocite-structured titanates (1DLs) are negatively charged due to an oxygen-to-titanium atomic ratio >2. This, and their layered structure, allow for facile ion exchange and high colloidal stability, demonstrated by ζ-potentials of ≈ -85 mV at their unadjusted pH of ≈10.4.

View Article and Find Full Text PDF

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF

This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.

View Article and Find Full Text PDF

Introduction: External continuous perturbations using a motion platform have been developed by employing either sum-of-sines (SoS) or a pseudorandom ternary sequence (PRTS) of numbers to quantify body sway evoked in the medial-lateral (ML) or anterior-posterior (AP) directions, which ultimately helps understand the human postural control system. These stimuli have been provided via pitch tilts of the motion platform for evaluations of AP balance responses or roll tilts for ML balance responses. However, little is known about whether a healthy postural control system responds to 2-dimensional (2D) perturbations similarly when the perturbation stimuli are provided in semicircular canal coordinates (i.

View Article and Find Full Text PDF

This work elucidates the thermo-kinetics of the thermal conversion of cameroonian kaolin to metakaolin as the main product. The thermokinetical parameters (activation energy and pre-exponential factor ) for the kaolin conversion were calculated using model-free methods, the Kissinger-Akahira-Sunrose (KAS) and the Flynn-Wall-Ozawa (FWO) method, and differential methods (Kissinger and Ozawa) additionally including iterative procedures for KAS and FWO methods (KAS-Ir; FWO-Ir). The cameroonian kaolin was heat-treated using three different heating rates, 5, 20 and 40 K min, leading to metakaolin samples named MK-(5), MK-(20) and MK-(40).

View Article and Find Full Text PDF