Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lung cancer is one of the leading triggers for cancer death worldwide. In this study, the relationship of the aberrantly methylated and differentially expressed genes in lung adenocarcinoma (LUAD) with cancer prognosis was investigated, and 5 feature genes were identified eventually. Specifically, we firstly downloaded the LUAD-related mRNA expression profile (including 57 normal tissue samples and 464 LUAD tissue samples) and Methy450 expression data (including 32 normal tissue samples and 373 LUAD tissue samples) from the TCGA database. The package "limma" was used to screen differentially expressed genes and aberrantly methylated genes, which were intersected for identifying the hypermethylated downregulated genes (DGs Hyper) and the hypomethylated upregulated genes (UGs Hypo). GO annotation and KEGG pathway enrichment analysis were further performed, and it was found that these DGs Hyper and UGs Hypo were predominantly activated in the biological processes and signaling pathways such as the regulation of vasculature development, DNA-binding transcription activator activity, and Ras signaling pathway, indicating that these genes play a vital role in the initiation and progression of LUAD. Additionally, univariate and multivariate Cox regression analyses were conducted to find the genes significantly associated with LUAD prognosis. Five genes including SLC2A1, TNS4, GAPDH, ATP8A2, and CASZ1 were identified, with the former three highly expressed and the latter two poorly expressed in LUAD, indicating poor prognosis of LUAD patients as judged by survival analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7532994PMC
http://dx.doi.org/10.1155/2020/1807089DOI Listing

Publication Analysis

Top Keywords

tissue samples
16
genes
9
slc2a1 tns4
8
tns4 gapdh
8
gapdh atp8a2
8
atp8a2 casz1
8
lung adenocarcinoma
8
aberrantly methylated
8
differentially expressed
8
expressed genes
8

Similar Publications

Galectin-10(Gal-10)/CLC(Charcot-Leyden crystal) has been discovered to be related to ECRSwNP characterized by high eosinophilic infiltration. We aimed to investigate the effects of Gal-10 on ECRSwNP. A total of 36 tissue samples were collected, including 11 ECRSwNP samples, 15 non-ECRSwNP samples, and 10 Control samples.

View Article and Find Full Text PDF

Invasive ductal carcinoma (IDC) is a major type of breast cancer. The utilization of inhibitors targeting histone methyltransferases introduces novel therapeutic avenues for the treatment of cancer. Immunohistochemistry, Western blot, and reverse transcription quantitative polymerase chain reaction experiments were applied to assess the levels of EHMT2 in IDC and adjacent tissues.

View Article and Find Full Text PDF

While human autopsy samples have provided insights into pulmonary immune mechanisms associated with severe viral respiratory diseases, the mechanisms that contribute to a clinically favorable resolution of viral respiratory infections remain unclear due to the lack of proper experimental systems. Using mice co-engrafted with a genetically matched human immune system and fetal lung xenograft (fLX), we mapped the immunological events defining successful resolution of SARS-CoV-2 infection in human lung tissues. Viral infection is rapidly cleared from fLX following a peak of viral replication, histopathological manifestations of lung disease and loss of AT2 program, as reported in human COVID-19 patients.

View Article and Find Full Text PDF

Enoxaparin sodium (ES), a low molecular weight heparin derivative, has recently been recognized for its diverse biological activities. In particular, the ability of heparin to modulate inflammation has been utilized to enhance the biocompatibility of bone implant materials. In this study, we utilized poly (methyl methacrylate) (PMMA), a drug loading bone implant material, as a matrix and combined this with enoxaparin sodium (ES) to create enoxaparin sodium PMMA cement (ES-PMMA) to investigate the regulatory effects of ES on inflammatory responses in bone tissue from an animal model.

View Article and Find Full Text PDF

Electroporation is a promising technology utilizing electrical pulses for macromolecule delivery and soft-tissue ablation, with applications that include next-generation prophylactics and the treatment of genetic diseases such as cancer. This study demonstrates a high-throughput capable 3D tissue culture model for quantification of the reversible and irreversible electroporation thresholds for a given electroporation protocol. By using a non-uniform electric field and analyzing the spatial distribution of transfected cells, both reversible and irreversible thresholds can be identified within a single sample, increasing the efficiency at which electroporation protocols can be characterized, especially for in vivo translation.

View Article and Find Full Text PDF