98%
921
2 minutes
20
Duane retraction syndrome (DRS) is a neuromuscular dysfunction of the eyes. Although many causative genes of DRS have been identified in Europe and the United States, few reports have been published in regard to Chinese DRS. The aim of the present study was to explore the genetic defect of DRS in a Chinese family. Exome sequencing was used to identify the disease-causing gene for the two affected family members. Ophthalmic and physical examinations, as well as genetic screenings for variants in chimerin 1 (CHN1), were performed for all family members. Functional analyses of a CHN1 variant in 293T cells included a Rac-GTP activation assay, α2-chimaerin translocation assay, and co-immunoprecipitation assay. Genetic analysis revealed a NM_001822.7: c.637T > G variant in the CHN1 gene, which resulted in the substitution of a highly conserved C1 domain with valine at codon 213 (NP_001813.1: p.(Phe213Val)) (ClinVar Accession Number: SCV001335305). In-silico analysis revealed that the p.(Phe213Val) substitution affected the protein stability and connections among the amino acids of CHN1 in terms of its tertiary protein structure. Functional studies indicated that the p.(Phe213Val) substitution reduced Rac-GTP activity and enhanced membrane translocation in response to phorbol-myristoyl acetate (PMA). Together with previous studies, our present findings demonstrate that CHN1 may be an important causative gene for different ethnicities with DRS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7531002 | PMC |
http://dx.doi.org/10.1038/s41598-020-73190-1 | DOI Listing |
Signal Transduct Target Ther
September 2025
Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
Essential tremor (ET) is a common neurological disease that is characterized by 4-12 Hz kinetic tremors of the upper limbs and high genetic heterogeneity. Although numerous candidate genes and loci have been reported, the etiology of ET remains unclear. A novel ET-related gene was initially identified in a five-generation family via whole-exome sequencing, and other variants were identified in 772 familial ET probands and 640 sporadic individuals via whole-genome sequencing.
View Article and Find Full Text PDFBiol Pharm Bull
September 2025
Department of Intensive Care Unit, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310007, China.
Ferroptosis is involved in the progression of sepsis-induced acute lung injury (ALI). Kaempferol is a flavonoid compound that can protect against ALI. 5-Methylcytosine (m5C) is involved in the pathogenesis of sepsis.
View Article and Find Full Text PDFTohoku J Exp Med
September 2025
Department of Neurosurgery, Taihe Hospital Affiliated to Wannan Medical College.
JACC Cardiovasc Interv
September 2025
The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Background: Previous trials have demonstrated increased 5-year risks for adverse clinical events after coronary artery implantation of poly-l-lactic acid-based bioresorbable scaffolds (BRS) compared with cobalt chromium (CoCr) everolimus-eluting stents (EES).
Objectives: The aim of this study was to evaluate the 5-year clinical outcomes of the novel sirolimus-eluting NeoVas BRS compared with CoCr EES.
Methods: A total of 560 patients with single de novo native coronary artery lesions with reference vessel diameter 2.
Int Immunopharmacol
September 2025
Pharmacy of College, Hunan University of Chinese Medicine, Changsha, China,; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China; Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumo
Mitochondria play a crucial role as a hub for innate immune signal transduction, with mitochondrial antiviral signaling protein (MAVS) being a key regulator in the activation of interferon-β (IFN-β) production. It is essential for MAVS to initiate innate antiviral responses against RNA viruses, contributing to the host's defense mechanisms. In this study, we identified the mitochondrial protein Paraneoplastic Ma Family 4 (PNMA4/MOAP1) as a MAVS-interacting protein by using proximity-based labeling technology in THP-1 and discovered that it could enhance retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) signaling pathway.
View Article and Find Full Text PDF