Robust hydrophobic veova10-based colloidal photonic crystals towards fluorescence enhancement of quantum dots.

Nanoscale

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China.

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydrophobic photonic crystals (PCs) has been increasingly appreciated as a promising functional material due to their distinct surface characteristic of structural color and hydrophobicity. However, it remains a challenge to fabricate hydrophobic PCs via a one-step process. Inspired by the development of high-performance waterborne coatings, we propose an easy-to-perform and high-efficiency strategy to construct hydrophobic building blocks (diameter of 221, 247, 276 and 305 nm), where the umbelli-form hydrophobic long chain (veova10 C > 9) was loaded onto polystyrene (PS) colloidal particles in situ. Taking advantage of the hydrophobic driving force between the colloidal particles, large-scale colloidal photonic crystals (CPCs) film with crack-free morphology was obtained efficiently. The derived CPCs exhibit robust mechanical stability, prominent hydrophobicity and excellent optical properties. In addition, the colloidal latex holds great potential toward PCs coatings on a variety of substrates (glass, plastic and steel) with excellent adhesiveness. Furthermore, we contrive to construct angle-independent structural color films and supraballs, and explore their application in quantum dots (QDs) fluorescence enhancement, which achieved an enhancement effect by more than eight times. From the standpoint of practical applications, we achieved the flexible high-brightness wearable light-emitting diode (LED) displays. This work will lay a foundation for the development of high-efficiency PCs building blocks, and indicate the direction for the meaningful application of CPCs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr04676kDOI Listing

Publication Analysis

Top Keywords

photonic crystals
12
colloidal photonic
8
fluorescence enhancement
8
quantum dots
8
structural color
8
building blocks
8
colloidal particles
8
colloidal
5
hydrophobic
5
robust hydrophobic
4

Similar Publications

Ginseng exosomes are a kind of promising extracellular vesicle containing unique bioactive components. However, the investigation on ginseng-derived exosomes is still in the initial stage. This study developed a photonic crystal-based Bragg scattering coupling electrochemiluminescence (BSC-ECL) biosensor for detection of miRNA396a-3p in exosome-like nanoparticles (GENs) and ginseng exosomes (Gexos).

View Article and Find Full Text PDF

Towards Floquet Chern insulators of light.

Nat Nanotechnol

September 2025

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.

Topological photonics explores photonic systems that exhibit robustness against defects and disorder, enabled by protection from underlying topological phases. These phases are typically realized in linear optical systems and characterized by their intrinsic photonic band structures. Here we experimentally study Floquet Chern insulators in periodically driven nonlinear photonic crystals, where the topological phase is controlled by the polarization and the frequency of the driving field.

View Article and Find Full Text PDF

Tracking phase transitions of tactoids in sulfated cellulose nanocrystals using second harmonic generation microscopy.

Carbohydr Polym

November 2025

Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:

Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.

View Article and Find Full Text PDF

Second-order nonlinear optical processes are fundamental to photonics, spectroscopy, and information technologies, with material platforms playing a pivotal role in advancing these applications. Here, we demonstrate the exceptional nonlinear optical properties of the van der Waals crystal 3R-MoS, a rhombohedral polymorph exhibiting high second-order optical susceptibility ( ) and remarkable second-harmonic generation (SHG) capabilities. By designing high quality factor resonances in 3R-MoS metasurfaces supporting quasi-bound states in the continuum (qBIC), we first demonstrate SHG efficiency enhancement exceeding 10.

View Article and Find Full Text PDF

Time crystals are unexpected states of matter that spontaneously break time-translation symmetry either in a discrete or continuous manner. However, spatially mesoscale space-time crystals that break both space and time symmetries have not been reported. Here we report a continuous space-time crystal in a nematic liquid crystal driven by ambient-power, constant-intensity unstructured light.

View Article and Find Full Text PDF