98%
921
2 minutes
20
Purpose: This study aimed to design a fully automated framework to evaluate intrafraction motion using orthogonal x-ray images from CyberKnife.
Methods: The proposed framework includes three modules: (a) automated fiducial marker detection, (b) three-dimensional (3D) position reconstruction, and (c) intrafraction motion evaluation. A total of 5927 images from real patients treated with CyberKnife fiducial tracking were collected. The ground truth was established by labeling coarse bounding boxes manually, and binary mask images were then obtained by applying a binary threshold and filter. These images and labels were used to train a detection model using a fully convolutional network (fCN). The output of the detection model can be used to reconstruct the 3D positions of the fiducial markers and then evaluate the intrafraction motion via a rigid transformation. For a patient test, the motion amplitudes, rotations, and fiducial cohort deformations were calculated used the developed framework for 13 patients with a total of 52 fractions.
Results: The precision and recall of the fiducial marker detection model were 98.6% and 95.6%, respectively, showing high model performance. The mean (±SD) centroid error between the predicted fiducial markers and the ground truth was 0.25 ± 0.47 pixels on the test data. For intrafraction motion evaluation, the mean (±SD) translations in the superior-posterior (SI), left-right (LR), and anterior-posterior (AP) directions were 13.1 ± 2.2 mm, 2.0 ± 0.4 mm, and 5.2 ± 1.4 mm, respectively, and the mean (±SD) rotations in the roll, pitch and yaw directions were 2.9 ± 1.5°, 2.5 ± 1.5°, and 3.1 ± 2.2°. Seventy-one percent of the fractions had rotations larger than the system limitations. With rotation correction during rigid registration, only 2 of the 52 fractions had residual errors larger than 2 mm in any direction, while without rotation correction, the probability of large residual errors increased to 46.2%.
Conclusion: We developed a framework with high performance and accuracy for automatic fiducial marker detection, which can be used to evaluate intrafraction motion using orthogonal x-ray images from CyberKnife. For liver patients, most fractions have fiducial cohort rotations larger than the system limitations; however, the fiducial cohort deformation is small, especially for the scenario with rotation correction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.14501 | DOI Listing |
ArXiv
August 2025
Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
Purpose: Accurate patient positioning is crucial for precise radiation therapy dose delivery, as errors in positioning can profoundly influence treatment outcomes. This study introduces a novel application for loco-regional tissue deformation tracking via Cherenkov image analysis during fractionated breast cancer radiation therapy. The primary objective of this research was to develop and test an algorithmic method for Cherenkov-based position accuracy quantification, particularly for loco-regional deformations, which do not have an ideal method for quantification during radiation therapy.
View Article and Find Full Text PDFLife (Basel)
August 2025
Departments of Radiation Oncology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea.
Surface-Guided Radiation Therapy (SGRT) has been widely adopted in breast cancer radiotherapy, particularly for improving setup accuracy and motion management. Recently, its application in lung cancer has attracted growing interest due to similar needs for precision. This study investigates the feasibility and clinical utility of SGRT in lung cancer treatment, focusing on its effectiveness in patient setup and real-time motion monitoring under frameless immobilization conditions.
View Article and Find Full Text PDFCancers (Basel)
August 2025
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Background: Stereotactic body radiation therapy (SBRT) has proven effective in controlling spinal lesions with minimal toxicity, primarily due to its ability to limit spinal cord dose. Recent advances in MR-linac (MRL) technology offer superior spinal cord visualization and real-time gating, which can facilitate dose escalation in spinal tumor treatment while maintaining safety.
Purpose: This study aimed to optimize motion management for spine SBRT on an MRL by analyzing patient-specific motion dynamics and evaluating the most effective registration structures.
Med Phys
September 2025
Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands.
Background: Intra-fraction motion management techniques, including beam gating and intra-fraction drift correction (IDC), have recently been introduced on the Unity MR-linac (Elekta AB, Stockholm, Sweden) to mitigate the dosimetric impact of motion during treatment. However, residual motion (e.g.
View Article and Find Full Text PDFJ Appl Clin Med Phys
September 2025
Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
Background: Single-isocenter multi-target volumetric modulated arc therapy (SIMT-VMAT) has been implemented widely in fractionated stereotactic radiosurgery (fSRS) to treat brain metastases. The impact of rotational intra-fractional patient motion (IFPM) is influenced by the distance between the geometric target's center and the isocenter (DTI).
Purpose: We hypothesized that IFPM's impact on each target would increase with greater DTI during fSRS.