Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To design higher-strength natural scaffold materials, wool keratin (WK) rich in α-helix structures is used as a well-defined foreign substrate, which induces the formation of β-crystallites in silk fibroin (SF). Consequently, the macroscopic properties of silk materials (such as the rheological properties of SF hydrogels and the mechanical properties of stents) can be manipulated by governing the change in the hierarchical mesoscopic structure of silk materials. In this work, by monitoring the structure and morphology in the SF gel process, the mechanism of the effect of keratin on SF network formation was speculated, which was further used to design ultra-high-strength protein scaffolds. It has been confirmed that WK accelerates the gelation of SF by reducing the multistep nucleation barrier and increasing the primary nucleation sites, and then establishing a high-density SF domain network. The modulus of the protein composite scaffold prepared by this facile strategy can reach 11.55 MPa, and the MC-3T3 cells can grow well on the scaffold surface. The results suggest that freeze-dried biocompatible SF-based scaffolds are potential candidates for bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.0c00981DOI Listing

Publication Analysis

Top Keywords

silk fibroin
8
silk materials
8
programing performance
4
silk
4
performance silk
4
fibroin superstrong
4
superstrong scaffolds
4
scaffolds mesoscopic
4
mesoscopic regulation
4
regulation hierarchical
4

Similar Publications

Sustained Mg/Sr ion delivery from injectable silk fibroin hydrogels drives SCAP osteogenic differentiation.

iScience

September 2025

Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Biomaterials for Oral Disease, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.

This study highlights the biomedical relevance of injectable TS (tannic acid-silk fibroin)-Mg/Sr hydrogels in alveolar bone repair, particularly their prospective role as carriers for stem cells from the apical papilla (SCAPs) in tissue regeneration. By utilizing self-assembling silk material, noted for its favorable handling properties, we present a useful approach for single-wall bone defects, such as bone fenestration and fractures in the oral cavity. Furthermore, our findings regarding the involvement of the TRPM7 ion channel indicate a possible regulatory pathway for improving alveolar bone defect repair.

View Article and Find Full Text PDF

A Core-Shell Structured Microneedle Patch With Adjustable Release of Kinetically for the Treatment of Melasma.

Adv Healthc Mater

September 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China.

Melasma is a facial hyperpigmentation disease that significantly impacts patients' quality of life. Clinical treatment is limited by the short half-lives and hydrophilicity of drugs, necessitating release curve optimization to maintain a stable therapeutic concentration for an extended period. This article utilizes natural biomaterials to design a core-shell structured microneedle, combining the "immediate release" and "delayed release" module to achieve programmed drug release.

View Article and Find Full Text PDF

The stress urinary incontinence (SUI) is a difficulty in urology and current sub-urethral sling treatments are associated with inflamation and recurrence. In this study, we developed a novel tissue-engineered sling with myogenic induced adiposederived stem cells (MI-ADSCs) sheets induced by 5-Aza and combined with electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) (SF/PLGA) for the treatment of stress urinary incontinence. MI-ADSCs increased α-SMA, MyoD and Desmin the mRNA and protein expression.

View Article and Find Full Text PDF

Hemostatic intervention at the bleeding site during early-phase wound management plays a crucial role in reducing trauma-induced complications and mortality, while advanced wound dressings facilitate hemorrhage control, exudate management, and antimicrobial protection to promote optimal healing outcomes. To address these issues, we developed a multifunctional collagen/silk fibroin/Mg(OH)₂ (Col/SF/Mg(OH)₂) composite sponge combining enhanced mechanical strength, rapid hemostasis, and broad-spectrum antibacterial activity. The incorporation of silk fibroin (SF) through covalent crosslinking increased the elastic modulus by 4.

View Article and Find Full Text PDF

Design and Fabrication of Flexible Silk Fibroin/Lanthanide Ion Membranes with Multifunctional Properties of Fluorescence, Humidity Sensitivity, and Conductivity.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing

Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.

View Article and Find Full Text PDF