98%
921
2 minutes
20
Organic carbon sources apportionment in river sediments is crucial to the output management of organic carbon. We conducted a source apportionment of sediment organic carbon in four rivers in Shaanxi Province, China, with a novel method that combined environmental scanning electron microscopy and energy dispersive X-ray spectrometry (ESEM-EDAX), principal component analysis (PCA), 16S rRNA sequencing, microbial community metabolic prediction, and positive matrix factorization (PMF). According to the ESEM-EDAX results, the sources of light fraction organic carbon (LFOC) were the vegetation residues and the organic carbon adsorbed on them; and the source of heavy fraction organic carbon (HFOC) was organic carbon wrapped in particles. Moreover, 16S rRNA sequencing results of LFOC and HFOC concerning microbes demonstrated that LFOC was mainly composed of carbohydrate, cellulose, and alky-aromatic compounds, and that carbohydrate with high molecular weight might be a part of HFOC. Based on the results of microbial community metabolic prediction, PCA, and PMF, we found dissolved organic carbon (DOC) was mainly from lipopolysaccharide biosynthesis, apoptosis, and decomposition of carboxylic acids. And it might be mainly composed of lipopolysaccharide, carbohydrates, and organic acid with low molecular. To reflect the appearance of a specific DOC type, three biomarkers were proposed based on the microbial relative abundance and specificity. This research proposed a new method to trace the sources of organic carbon and established microbial biomarkers for the appearance of specific DOC, which would promote the understanding of organic carbon sources into microbes. Thus, this research provides new perspectives in the source apportionment and the life cycle of organic carbon in rivers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.141840 | DOI Listing |
Environ Sci Pollut Res Int
September 2025
School of Chemical Engineering, State University of Campinas-Universidade Estadual de Campinas, Albert Einstein Av., 500, Campinas, SP, 13083-852, Brazil.
Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.
View Article and Find Full Text PDFJ Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA.
Populations of the acidophilic purple nonsulfur bacterium were identified in two geographically distinct thermal areas in Yellowstone National Park (Wyoming, USA), as confirmed by 16S rRNA gene sequencing and detection of characteristic methoxylated ketocarotenoids. Microcosm-based carbon uptake assays where oxygenic photosynthesis was excluded via addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea yielded a light-driven dissolved inorganic carbon (DIC) assimilation rate (7 ± 2 mg C g C h) comparable to those of highly productive algal mats in acidic hot springs, suggesting that may be performing photoautotrophy at the time of the assay. Rates of acetate assimilation were more than two orders of magnitude lower than DIC assimilation and did not differ between light and dark treatments, indicating photoheterotrophic use of acetate was not occurring, though photoheterotrophic assimilation of other organic compounds cannot be excluded.
View Article and Find Full Text PDFSmall
September 2025
College of Environment and Climate, Jinan University, Guangzhou, 511443, China.
Membrane technology for gas separation is more efficient and energy-saving than thermally driven processes, including cryogenic distillation and adsorption. Metal-organic framework (MOF) and related glass membranes hold great potential for precise gas separation, but it remains challenging to construct ultrathin MOF glass membranes and optimize their transport pathways. In this study, a strategy based on vapor-linker deposition and melt-quenching is reported to design ultrathin zeolitic imidazolate framework (ZIF) glass membranes with node-missing defect passageways.
View Article and Find Full Text PDFACS Electrochem
September 2025
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.
View Article and Find Full Text PDF