Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Existing swallowing evaluation methods using X-ray or endoscopy are qualitative. The present study develops a swallowing monitoring and assessment system (SMAS) that is nonintrusive and quantitative. The SMAS comprises an ultrasonic Doppler sensor array, a microphone, and an inertial measurement unit to measure ultrasound signals originating only from swallowing activities. Ultrasound measurements were collected for combinations of two viscosity conditions (water and yogurt) and two volume conditions (3 mL and 9 mL) from 24 healthy participants (14 males and 10 females; age = 30.5 ± 7.6 years) with no history of swallowing disorders and were quantified for 1st peak amplitude, 2nd peak amplitude, peak-to-peak (PP) time interval, duration, energy, and proportion of two or more peaks. The peak amplitudes and energy significantly decreased by viscosity and the PP time interval and duration increased by volume. The correlation between the time measures were higher ( = 0.78) than that of the amplitude measures ( = 0.30), and the energy highly correlated with the 1st peak amplitude ( = 0.86). The proportion of two or more peaks varied from 76.8% to 87.9% by viscosity and volume. Further research is needed to examine the concurrent validity and generalizability of the ultrasonic Doppler sensor-based SMAS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472343PMC
http://dx.doi.org/10.3390/s20164529DOI Listing

Publication Analysis

Top Keywords

ultrasonic doppler
12
peak amplitude
12
doppler sensor-based
8
swallowing monitoring
8
monitoring assessment
8
assessment system
8
1st peak
8
time interval
8
interval duration
8
proportion peaks
8

Similar Publications

Introduction: Differentiating acute tubular necrosis (ATN) from rejection in pediatric kidney transplant (KT) recipients remains challenging and necessitates invasive biopsy. Doppler ultrasound-derived resistive index (RI) is a noninvasive modality to assess graft status, but its diagnostic utility in children is unclear. This study evaluates RI's ability to distinguish ATN and rejection in KT.

View Article and Find Full Text PDF

Objectives: The risk of major venous thromboembolism (VTE) among patients with COVID-19 is high but varies with disease severity. Estimate the incidence of lower extremity deep venous thrombosis (DVT) in critically ill hospitalized patients with COVID-19, validate the Wells score for DVT diagnosis, and determine patients' prognosis.

Methods: This was an observational follow-up study in the context of the diagnosis and prognosis of DVT.

View Article and Find Full Text PDF

Background: Nodular hidradenoma (NH) is a rare benign adnexal tumor originating from sweat glands, often misdiagnosed due to nonspecific clinical manifestations. Ultrasonography (US) plays a critical role in the diagnosis of skin tumors, yet systematic descriptions of its sonographic features remain limited.

Objective: This study aims to investigate the very-high-frequency (VHF) characteristics of eccrine nodular hidradenoma (ENH) and establish key imaging criteria to differentiate it from other cutaneous/subcutaneous lesions.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the impact of asthma severity on biventricular cardiac functions using tissue Doppler imaging (TDI), two-dimensional speckle tracking echocardiography (2D-STE), and three-dimensional speckle tracking echocardiography (3D-STE).

Methods: Sixty-three children with asthma, aged between 5 and 16 years, were enrolled in the study along with 63 matched controls. All participants underwent cardiac assessments, including TDI, 2D-STE, 3D-STE, conventional echocardiography, and pulmonary function testing with spirometry.

View Article and Find Full Text PDF

Widefield acoustics heuristic: advancing microphone array design for accurate spatial tracking of echolocating bats.

BMC Ecol Evol

September 2025

Lehrstuhl für Zoologie, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 4, Freising, 85354, Germany.

Accurate three-dimensional localisation of ultrasonic bat calls is essential for advancing behavioural and ecological research. I present a comprehensive, open-source simulation framework-Array WAH-for designing, evaluating, and optimising microphone arrays tailored to bioacoustic tracking. The tool incorporates biologically realistic signal generation, frequency-dependent propagation, and advanced Time Difference of Arrival (TDoA) localisation algorithms, enabling precise quantification of both positional and angular accuracy.

View Article and Find Full Text PDF