Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Several methods have been developed for using P-MRS to calculate rates of oxidative ATP synthesis (ATP ) during muscular contractions based on assumptions that (1) the ATP cost of force generation (ATP ) remains constant or (2) Michaelis-Menten coupling between cytosolic ADP and ATP does not change. However, growing evidence suggests that one, or both, of these assumptions are invalid during high-intensity fatigue protocols. Consequently, there is a need to examine the validity and accuracy of traditional ATP calculation methods under these conditions. To address this gap, we measured phosphate concentrations and pH in the vastus lateralis muscle of nine young adults during four rest-contraction-recovery trials lasting 24, 60, 120, and 240 s. The initial velocity of phosphocreatine resynthesis (V ) following each trial served as the criterion measure of ATP because this method makes no assumptions of constant ATP or Michaelis-Menten coupling between changes in cytosolic ADP and ATP . Subsequently, we calculated ATP throughout the 240 s trial using several traditional calculation methods and compared estimations of ATP from each method with time-matched measurements of V . Method 1, which assumes that ATP does not change, was able to model changes in V over time, but showed poor accuracy for predicting V across a wide range of ATP values. In contrast, Michaelis-Menten methods, which assume that the relationship between changes in cytosolic ADP and ATP remains constant, were invalid because they could not model the decline in V . However, adjusting these Michaelis-Menten methods for observed changes in maximal ATP capacity (i.e., V ) permitted modeling of the decline in V and markedly improved accuracy. The results of these comprehensive analyses demonstrate that valid, accurate measurements of ATP can be obtained during high-intensity contractions by adjusting Michaelis-Menten ATP calculations for changes in V observed from baseline to post-fatigue.

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.4381DOI Listing

Publication Analysis

Top Keywords

atp
18
cytosolic adp
12
adp atp
12
validity accuracy
8
oxidative atp
8
atp synthesis
8
atp remains
8
remains constant
8
michaelis-menten coupling
8
atp change
8

Similar Publications

Background And Purpose: Neuroinflammation is increasingly recognised to contribute to drug-resistant epilepsy. Activation of ATP-gated P2X7 receptors has emerged as an important upstream mechanism, and increased P2X7 receptor expression is present in the seizure focus in rodent models and patients. Pharmacological antagonists of P2X7 receptors attenuate seizures in rodents, but this has not been explored in human neural networks.

View Article and Find Full Text PDF

Mitochondria-associated condensates maintain mitochondrial homeostasis and promote lifespan.

Nat Aging

September 2025

State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.

Membraneless organelles assembled by liquid-liquid phase separation interact with diverse membranous organelles to regulate distinct cellular processes. It remains unknown how membraneless organelles are engaged in mitochondrial homeostasis. Here we demonstrate that mitochondria-associated translation organelles (MATOs) mediate local synthesis of proteins required for structural and functional maintenance of mitochondria.

View Article and Find Full Text PDF

Energy deficiency selects crowded live epithelial cells for extrusion.

Nature

September 2025

The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London, UK.

Epithelial cells work collectively to provide a protective barrier, yet they turn over rapidly through cell division and death. If the numbers of dividing and dying cells do not match, the barrier can vanish, or tumours can form. Mechanical forces through the stretch-activated ion channel Piezo1 link both of the processes; stretch promotes cell division, whereas crowding triggers live cells to extrude and then die.

View Article and Find Full Text PDF

Targeted hotspot profiling reveals a functionally relevant mutation in bladder cancer.

Urol Oncol

September 2025

Nutritional, Genes and Human Disease Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh. Electronic address:

Background: Understanding the mutational landscape is critical for elucidating the molecular mechanisms driving cancer progression. This study aimed to profile somatic mutations in bladder cancer patients (N=7) from Bangladesh to provide insights into the genetic alterations underlying this malignancy.

Methods: We performed targeted sequencing of 50 oncogenes and tumor suppressor genes using the Ion AmpliSeq Cancer Hotspot Panel v2 on tumor and matched blood samples from seven bladder cancer patients.

View Article and Find Full Text PDF

Defective mitochondrial quality control in the ageing of skeletal muscle.

Mech Ageing Dev

September 2025

Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy.

Age-related skeletal muscle decline is a major contributor to frailty, functional impairment, and loss of independence in advanced age. This process is characterized by selective atrophy of type II fibers, impaired excitation-contraction coupling, and reduced regenerative capacity. Emerging evidence implicates mitochondrial dysfunction as a central mechanism in the disruption of muscle homeostasis with age.

View Article and Find Full Text PDF