Cardiac magnetic resonance systematically overestimates mitral regurgitations by the indirect method.

Open Heart

Department of Cardiology, Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Cardiac MRI is quickly emerging as the gold standard for assessment of mitral regurgitation, most commonly with the indirect method subtracting forward flow in aorta from volumetric segmentation of the left ventricle. We aimed to investigate how aortic flow measurements with increasing distance from the aortic valve affect calculated mitral regurgitations and whether measurements were influenced by breath-hold regimen.

Methods: Free-breathing and breath-hold phase contrast flows were measured in aorta at valve level, sinotubular (ST) junction, mid-ascending aorta and in the pulmonary trunk. Flow measurements were pairwise compared, and subsequently, after exclusion of patients with visible mitral and tricuspid regurgitations for left-sided and right-sided comparisons, respectively, flow-measured stroke volumes were compared with ventricular volumetric segmentations.

Results: Thirty-nine participants without arrhythmias or structural abnormalities of the large vessels were included. Stroke volumes measured with free-breathing and breath-hold flow decreased equally with increasing distance to the aortic valves (breath-hold flow: aortic valve 105.6±20.8 mL, ST junction 101.5±20.7 mL, mid-ascending aorta 98.1±21.5 mL). After exclusion of atrioventricular regurgitations, stroke volumes determined by volumetric measurements were higher compared with values determined by flow measurements, corresponding to 'false' atrioventricular regurgitations of 8.0%±5.8% with flow measured at valve level, 11.6%±5.2% at the ST junction and 15.3%±5.0% at the mid-ascending aorta.

Conclusions: Stroke volumes determined by flow decrease throughout the proximal aorta and are systematically lower than volumetrically measured stroke volumes. The indirect method systematically overestimates mitral regurgitations, especially with increasing distance from the aortic valves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7368492PMC
http://dx.doi.org/10.1136/openhrt-2020-001323DOI Listing

Publication Analysis

Top Keywords

stroke volumes
20
mitral regurgitations
12
indirect method
12
flow measurements
12
increasing distance
12
distance aortic
12
systematically overestimates
8
overestimates mitral
8
flow
8
aortic valve
8

Similar Publications

Cerebral Amyloid Angiopathy, a common age-related small vessel disease leading to hemorrhagic stroke, shares many characteristics with Alzheimer's disease: toxic amyloid deposits, microvascular alterations and enlarged perivascular spaces (EPVS). Together, PVS enlargement, reduced amyloid-β clearance and further accumulation form a vicious cycle underlying disease progression. Yet, the neuropathological correlates of EPVS, including the associated angioarchitecture, are poorly understood.

View Article and Find Full Text PDF

Blood-Brain Barrier (BBB) dysfunction acts as a key mediator of ischemic brain injury, contributing to brain edema, inflammatory cell infiltration, and neuronal damage. The integrity of the BBB is largely maintained by tight junction proteins, such as Claudin-5, and its disruption exacerbates neurological deficits. Neurokinin B (NKB), a neuropeptide that belongs to the tachykinin family, has been implicated in various physiological processes, including neuroinflammation and vascular function.

View Article and Find Full Text PDF

Background: Remote ischemic conditioning (RIC), a novel neuroprotective therapy, has broad potential for reducing the occurrence and recurrence of cerebrovascular events, yet its mechanisms are not incompletely understood. The aim of this study is to investigate whether RIC alleviates apoptosis, inflammation, and reperfusion injury in rat models of ischemic stroke by regulating the Elabela (ELA)-apelin-Apelin receptor (APJ) system.

Methods: We established a rat model of middle cerebral artery occlusion (MCAO) with ischemia-reperfusion injury, and RIC was administered twice daily for 3 days post-MCAO.

View Article and Find Full Text PDF

Background And Purpose: Ciprofol, a novel intravenous anesthetic, has been shown to exert protective effects against ischemic stroke, a leading cause of death and disability; however, its molecular mechanisms remain unclear. This study aimed to explore the molecular mechanisms underlying the neuroprotective effects of ciprofol using metabolomics.

Methods: This study used a middle cerebral artery occlusion (MCAO) rat model to simulate cerebral ischemia-reperfusion injury (CIRI).

View Article and Find Full Text PDF

Astrocytes play a crucial role in ensuring neuronal survival and function. In stroke, astrocytes trigger the unfolded protein response (UPR) to restore endoplasmic reticulum homeostasis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a newly identified endoplasmic reticulum stress-induced neurotrophic factor, attenuates cerebral ischemic injury by reducing inflammatory responses.

View Article and Find Full Text PDF