Lasso Proteins: Modular Design, Cellular Synthesis, and Topological Transformation.

Angew Chem Int Ed Engl

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Entangled proteins have attracted significant research interest. Herein, we report the first rationally designed lasso proteins, or protein [1]rotaxanes, by using a p53dim-entwined dimer for intramolecular entanglement and a SpyTag-SpyCatcher reaction for side-chain ring closure. The lasso structures were confirmed by proteolytic digestion, mutation, NMR spectrometry, and controlled ligation. Their dynamic properties were probed by experiments such as end-capping, proteolytic digestion, and heating/cooling. As a versatile topological intermediate, a lasso protein could be converted to a rotaxane, a heterocatenane, and a "slide-ring" network. Being entirely genetically encoded, this robust and modular lasso-protein motif is a valuable addition to the topological protein repertoire and a promising candidate for protein-based biomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202006727DOI Listing

Publication Analysis

Top Keywords

lasso proteins
8
proteolytic digestion
8
lasso
4
proteins modular
4
modular design
4
design cellular
4
cellular synthesis
4
synthesis topological
4
topological transformation
4
transformation entangled
4

Similar Publications

Utility and performance of cerebrospinal fluid cytology in discriminating central nervous system infections and brain tumors.

J Neurooncol

September 2025

Department of Neurology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, China.

Background And Objective: Differentiating central nervous system infections (CNSIs) from brain tumors (BTs) is difficult due to overlapping features and the limited individual indicators, and cerebrospinal fluid (CSF) cytology remains underutilized. To improve differential diagnosis, we developed a model based on 9 early, cost-effective cerebrospinal fluid parameters, including CSF cytology.

Methods: Patients diagnosed with CNSIs or BTs at Xiangya Hospital of Central South University between October 1st, 2017 and March 31st, 2024 were enrolled and divided into the training set and the test set.

View Article and Find Full Text PDF

 Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.

View Article and Find Full Text PDF

Analysis of the toxicity and mechanisms of osteoporosis caused by cigarette toxicants using network toxicology and molecular docking techniques.

Sci Total Environ

September 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China. Electronic address:

The objective of this research was to use a network toxicology approach to examine the possible toxicity of the cigarette toxicants nicotine and coal tar that cause osteoporosis (OP) as well as its molecular processes. We determined the primary chemical structures and 128 targets of action of tar and nicotine using the Swiss Target Prediction, NP-MRD, and PubChem databases. We discovered that genes including DNAJB1, CCDC8, LINC00888, ATP6V1G1, MPV17L2, PPCS, and TACC1 had a disease prognostic guiding value by LASSO analysis and differential analysis of GEO microarray data.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF