Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rational eutrophication management largely depends on the knowledge of the dynamics in the dissolved inorganic nutrients especially nitrogen forms which trigger exponential primary productivity in eutrophic systems. The present study investigated the phytoplankton interactions with the dissolved N forms, nitrate (NO) and ammonium (NH) in a sub-tropical Yangtze River tributary, China vulnerable to multiple anthropogenic stressors following the impoundment of the largest hydraulic structure, the Three Gorges Dam. Results indicated strong NO inhibition by the low NH pool exerting toxic effects on the major phytoplankton groups, particularly the Bacilliariophyta (relative abundance < 1%) while significant Cyanophyta proliferation prevailed (relative abundance ≥ 90%). Strong N limitation exacerbated by NH deficit and P replete condition characterizes the summer bloom in the tributary. The biomass attenuation kinetics revealed significantly fast NH metabolism, half-life (t= 1.4 d, K = 0.00750 ± 0.004 d) as the first-order rate adequately fitted into the experimental data although, the second-order rate also demonstrated considerable goodness of fit. The growth responses induced by the Si enrichment potentially suggested possible secondary limitation by Si with the likelihood of intensification should the ecosystem phytoplankton community dominance shifts from Cyanophyta to the Bacilliariophyta. The response of P enrichment on growth was attributed to luxury consumption rather than limitation as responses only became significant towards the end of the study. The study, therefore, presents the first report of biomass ageing rate worthy of incorporation into the recent bloom management protocol for the development of predictive ecosystem dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.110971DOI Listing

Publication Analysis

Top Keywords

nitrate ammonium
8
evaluating phytoplankton
4
phytoplankton nitrate
4
ammonium interactions
4
interactions summer
4
summer bloom
4
bloom tributary
4
tributary subtropical
4
subtropical reservoir
4
reservoir rational
4

Similar Publications

Arbuscular mycorrhizal fungi enhance nitrate ammonification in hyphosphere soil.

New Phytol

September 2025

State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.

Microbial nitrate ammonification is a crucial process to retain nitrogen (N) in soils, thereby reducing N loss. Nitrate ammonification has been studied in enrichment and axenic bacterial cultures but so far has been merely ignored in environmental studies. In particular, the capability of arbuscular mycorrhizal fungi (AMF) to regulate nitrate ammonification has not yet been explored.

View Article and Find Full Text PDF

Karst water bodies are vital groundwater resources particularly vulnerable to pollution. Protecting their water quality requires documenting contaminants traditionally associated with anthropogenic activities (metals, nutrients, and fecal indicator bacteria) as well as emerging contaminants, such as antibiotic-resistant organisms (AROs) and perfluoroalkyl substances (PFAS). This study detected contaminants in karst-associated water bodies on the Yucatán Peninsula, including 10 sinkholes (cenotes) and one submarine groundwater discharge (SGD) site.

View Article and Find Full Text PDF

Ceric Ammonium Nitrate Immobilized on Linoleic Acid-Functionalized FeO Nanoparticles as a Magnetically Recyclable Catalyst for C3-Selective Formylation of N-H Indoles.

ACS Omega

September 2025

Creative Chemistry and Innovation Research Unit,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand.

In this study, a novel magnetically recyclable catalyst was developed by immobilizing ceric ammonium nitrate (CAN) onto linoleic acid-functionalized magnetite nanoparticles (FeO-LA@CAN). The catalyst was thoroughly characterized using FT-IR, XRD, TEM, SEM-EDX, VSM, TGA, and N adsorption-desorption analyses. The catalytic efficiency of FeO-LA@CAN was evaluated in the C3-selective formylation of free (N-H) indole derivatives, exhibiting excellent activity and broad substrate scope.

View Article and Find Full Text PDF

The cytoplasmic N- and C-termini are dispensable for SLAH3 to mediate nitrate-dependent ammonium detoxification in Arabidopsis.

Biochem Biophys Res Commun

August 2025

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China. Electronic address: xiaochb@lz

Ammonium (NH) toxicity significantly limits nitrogen use efficiency (NUE) in agriculture. Nitrate (NO) supplementation mitigates this toxicity, with the anion channel SLAH3 playing a central role by mediating NO efflux to counteract NH-induced rhizosphere acidification. SLAH3, a plasma membrane protein with ten transmembrane domains and cytosolic N- and C-termini, is intrinsically silent.

View Article and Find Full Text PDF

The differentiation of the nitrate reduction pathway is of great significance in the ecosystem, as it determines the occurrence form of ecosystem N. In order to explore the impact and mechanism of different algal dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) on differentiation of nitrate (NO-N) reduction pathway, small-scale enclosure experiment was conducted to analyze the DON and DOP composition, nutrient level, microbial community composition and NO-N reduction pathway in ponds with Microcystis and Dolichospermum blooms. The main DON produced by Microcystis included lipids and proteins as well as carbohydrate which were readily degradable, whereas the DOP produced by Dolichospermum predominantly consists of readily degradable forms such as carbohydrate and protein.

View Article and Find Full Text PDF