Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mean tumor apparent diffusion coefficient (ADC) of breast cancer showed excellent repeatability but only moderate predictive power for breast cancer therapy response in the ACRIN 6698 multicenter imaging trial. Previous single-center studies have shown improved predictive performance for alternative ADC histogram metrics related to low ADC dense tumor volume. Using test/retest (TT/RT) 4 b-value diffusion-weighted imaging acquisitions from pretreatment or early-treatment time-points on 71 ACRIN 6698 patients, we evaluated repeatability for ADC histogram metrics to establish confidence intervals and inform predictive models for future therapy response analysis. Histograms were generated using regions of interest (ROIs) defined separately for TT and RT diffusion-weighted imaging. TT/RT repeatability and intra- and inter-reader reproducibility (on a 20-patient subset) were evaluated using wCV and Bland-Altman limits of agreement for histogram percentiles, low-ADC dense tumor volumes, and fractional volumes (normalized to total histogram volume). Pearson correlation was used to reveal connections between metrics and ROI variability across the sample cohort. Low percentiles (15th and 25th) were highly repeatable and reproducible, wCV < 8.1%, comparable to mean ADC values previously reported. Volumetric metrics had higher wCV values in all cases, with fractional volumes somewhat better but at least 3 times higher than percentile wCVs. These metrics appear most sensitive to ADC changes around a threshold of 1.2 μm/ms. Volumetric results were moderately to strongly correlated with ROI size. In conclusion, Lower histogram percentiles have comparable repeatability to mean ADC, while ADC-thresholded volumetric measures currently have poor repeatability but may benefit from improvements in ROI techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289237PMC
http://dx.doi.org/10.18383/j.tom.2020.00008DOI Listing

Publication Analysis

Top Keywords

adc histogram
12
histogram metrics
12
acrin 6698
12
breast cancer
12
therapy response
12
adc
8
cancer therapy
8
dense tumor
8
diffusion-weighted imaging
8
repeatability adc
8

Similar Publications

Background: Advanced diffusion models have been introduced to improve characterization of tissue microstructure in breast cancer assessment.

Purpose: This study aimed to evaluate the diagnostic utility of monoexponential apparent diffusion coefficient (ADC), time-dependent diffusion magnetic resonance imaging (td-dMRI), and the Continuous-Time Random-Walk (CTRW) diffusion model for differentiating breast lesions and predicting Ki-67 expression levels.

Methods: Fifty-three consecutive patients with suspected breast lesions undergoing preoperative MRI were enrolled in this prospective investigation.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to determine the effectiveness of ADC histogram analysis in diagnosing and determining the aggressiveness of peripheral zone (PZ) prostate cancer, and to reveal the relationship between Gleason and PI-RADS scores.Material and method: 61 patients who underwent standard 12-core and cognitive prostate biopsy and multiparametric prostate magnetic resonance imaging before biopsy were included in the study. According to the pathology results, patients were classified as either having clinically significant cancer with malignancy ( = 35) or as clinically insignificant - benign ( = 26).

View Article and Find Full Text PDF

Objectives: Xerostomia toxicity continues to contribute towards a decrease in quality of life in head and neck cancer patients. Diffusion weighted MRI and the associated apparent diffusion coefficient (ADC) may identify the radiosensitive region within the parotid gland (PG). This study retrospectively assesses the feasibility of using percentile threshold values from the ADC map to generate a biological at-risk volume (BRV).

View Article and Find Full Text PDF

Optical single-sideband (SSB) transmission enhances spectral efficiency and mitigates transmission reach limitations caused by chromatic dispersion (CD), making it ideal for cost-effective data-center interconnects. This paper proposes and demonstrates deep neural network (DNN)-enabled optical performance monitoring (OPM) for optical SSB transmissions. By extracting features dependent on both carrier-to-signal power ratio (CSPR) and optical signal-to-noise ratio (OSNR) from amplitude histograms (AHs) generated by an AC-coupled photodetector (PD) and an analog-to-digital converter (ADC), a low-complexity dual-task DNN (DT-DNN) is employed to jointly estimate CSPR and OSNR with high accuracy.

View Article and Find Full Text PDF

Background And Purpose: Distinguishing between high-grade glioma (HGG) and primary central nervous system lymphoma (PCNSL) is of paramount clinical importance, as these entities necessitate substantially different therapeutic approaches. The differential diagnosis becomes particularly challenging when HGG presents without characteristic magnetic resonance imaging (MRI) features, making it difficult to differentiate from PCNSL. The diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) offer quantitative assessments of water molecule diffusion within tissues, thereby providing potential means to characterize microstructural differences between HGG and PCNSL.

View Article and Find Full Text PDF