Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The interplay between obesity and type 2 diabetes (T2D) in poststroke recovery is unclear. Moreover, the impact of glucose control during the chronic phase after stroke is undetermined. We investigated whether obesity-induced T2D impairs neurological recovery after stroke by using a clinically relevant experimental design. We also investigated the potential efficacy of two clinically used T2D drugs: the dipeptidyl peptidase 4 inhibitor linagliptin and the sulfonylurea glimepiride. We induced transient middle cerebral artery occlusion (tMCAO) in T2D/obese mice (after 7 months of high-fat diet [HFD]) and age-matched controls. After stroke, we replaced HFD with standard diet for 8 weeks to mimic the poststroke clinical situation. Linagliptin or glimepiride were administered daily from 3 days after tMCAO for 8 weeks. We assessed neurological recovery weekly by upper-limb grip strength. Brain damage, neuroinflammation, stroke-induced neurogenesis, and atrophy of parvalbumin-positive (PV) interneurons were quantified by immunohistochemistry. T2D/obesity impaired poststroke neurological recovery in association with hyperglycemia, neuroinflammation, and atrophy of PV interneurons. Both drugs counteracted these effects. In nondiabetic mice, only linagliptin accelerated recovery. These findings shed light on the interplay between obesity and T2D in stroke recovery. Moreover, they promote the use of rehabilitative strategies that are based on efficacious glycemia regulation, even if initiated days after stroke.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db20-0095DOI Listing

Publication Analysis

Top Keywords

neurological recovery
16
recovery
8
phase stroke
8
type diabetes
8
interplay obesity
8
stroke
6
regulation glycemia
4
glycemia recovery
4
recovery phase
4
stroke counteracts
4

Similar Publications

Background: Sulfur dioxide (SO) is recognized as a major atmospheric pollutant and its excessive emissions can pose a great threat to the environment, flora and fauna, and human health. Long-term exposure to excessive SO can cause chronic poisoning, leading to neurological disorders and cardiovascular diseases. However, there are two sides to everything.

View Article and Find Full Text PDF

Background: Brainstem cavernous malformations (BSCMs) are rare yet high-risk vascular lesions with a complex clinical course due to their eloquent location. Optimal treatment remains a topic of debate. This review aims to evaluate the outcomes of different management strategies for BSCMs, with a focus on rebleeding, functional recovery, and mortality.

View Article and Find Full Text PDF

Introduction: Craniopagus is one of the rarest congenital abnormalities. Separation of craniopagus twin is associated with high morbidity and mortality, especially in total type, where the twin had shared dural venous sinuses. One of the complications after separation surgery is hydrocephalus.

View Article and Find Full Text PDF

Miltirone Attenuates Post-Ischemic Stroke Neuroinflammation and Microglial Lipid Metabolism via regulating LBP and TLR4/NF-κB Axis.

J Stroke Cerebrovasc Dis

September 2025

Department of pain medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.. Electronic address:

Background: Ischemic stroke is a leading cause of neurological disability. Current therapies fail to address its multifactorial pathologies. Miltirone, a bioactive compound from Salvia miltiorrhiza, has shown antioxidative and anti-inflammatory potential.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Fujian Tablet (FJT), a traditional Chinese herbal compound formulation developed under the theoretical framework of "nourishing the liver and kidney, replenishing essence and marrow" , has been clinically applied for over two decades to treat post-stroke neurological deficits. Preliminary studies demonstrated its efficacy in improving motor function and promoting cervical spinal cord neuroaxonal growth in a middle cerebral artery occlusion (MCAO) rat model. Building upon these findings, this study integrates metabolomic evidence of Foxo3a-GPX4 axis activation to systematically elucidate Fujian Tablet's neurorestorative mechanisms through three interconnected pathways: regulation of ferroptosis, promotion of oligodendrocyte proliferation, and remyelination.

View Article and Find Full Text PDF