Optimization of Active Sites via Crystal Phase, Composition, and Morphology for Efficient Low-Iridium Oxygen Evolution Catalysts.

Angew Chem Int Ed Engl

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reducing the amount of iridium in oxygen evolution electrocatalysts without compromising their catalytic performances is one of the major requirements in proton-exchange-membrane water electrolyzers. Herein, with the help of theoretical studies, we show that anatase-type TiO -IrO solid solutions possess more active iridium catalytic sites for the oxygen evolution reaction (OER) than IrO , the benchmark OER catalyst. Note that the same is not observed for their rutile-type counterparts. However, owing to their thermodynamic metastability, anatase-type TiO -IrO solid solutions are generally hard to synthesize. Our theoretical studies demonstrate that such catalytically active anatase-type solid-solution phases can be created in situ on the surfaces of readily available SrTiO -SrIrO solid solutions during electrocatalysis in acidic solution as the solution can etch away Sr atoms. We experimentally show this with porous SrTiO -SrIrO solid-solution nanotubes synthesized by a facile synthetic route that contain 56 % less iridium than IrO yet show an order of magnitude higher apparent catalytic activity for OER in acidic solution.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202006756DOI Listing

Publication Analysis

Top Keywords

oxygen evolution
12
solid solutions
12
theoretical studies
8
anatase-type tio
8
tio -iro
8
-iro solid
8
srtio -sriro
8
acidic solution
8
optimization active
4
active sites
4

Similar Publications

The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.

View Article and Find Full Text PDF

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF

High-activity Ce-CoB porous electrocatalysts cerium doping for superior OER performance.

Chem Commun (Camb)

September 2025

Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Ce-doped cobalt boride (Ce-CoB) was synthesized a ZIF-67-derived boridation strategy, where Ce incorporation synergistically tunes the electronic structure to accelerate oxygen evolution kinetics. The Ce-CoB achieves an overpotential of 320 mV at 10 mA cm, outperforming benchmark CoB by 15.8% ( 350 mV) with remarkable robustness.

View Article and Find Full Text PDF

Protonation Enables Durable and Efficient Water Oxidation on Commercial TiO/IrO.

J Phys Chem Lett

September 2025

Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China.

The oxygen evolution reaction (OER) performance of commercial TiO-supported IrO (IrO/TiO) suffers from the high electron transfer barriers at the IrO/TiO interface. Herein, we develop a cathodic polarization strategy to protonate TiO (p-TiO) in a commercial IrO/TiO catalyst. The high-density Ti-OH polaronic states on the surface of protonated TiO greatly contribute to the decrease in the electron transfer barriers at the IrO/TiO interface.

View Article and Find Full Text PDF

Proton transfer plays an important role in both hydrogen and oxygen evolution reactions during electrocatalytic water splitting to produce green hydrogen. However, directly adapting the conventional proton/deuterium kinetic isotope effect to study proton transfer in heterogeneous electrocatalytic processes is challenging. Here we propose using the shift in the Tafel slope between protic and deuteric electrolytes, or the Tafel slope isotope effect, as an effective probe of proton transfer characteristics.

View Article and Find Full Text PDF