98%
921
2 minutes
20
The present study aimed to investigate the effects of arbuscular mycorrhizal (AM) fungal communities originating from organic and conventional agriculture on wheat growth and yield. Six different spring wheat cultivars released in different years in north and central European countries were considered. We hypothesised that AM fungal inoculum collected from organic agricultural fields would elicit a greater positive growth response than inoculum collected from conventional agricultural fields; and that older cultivars, which were developed under conditions of low fertilizer input, would exhibit overall greater growth responses to the presence of AM fungi, compared with more recent cultivars, and that AM fungal inoculum from conventional fields might have the most beneficial effect on the growth and yield of recent cultivars. The results showed that the overall effects on the growth and yield of spring wheat grown with organic and conventional AM fungal inocula did not differ greatly. However, the inoculation growth response, showing the difference of the effects of organic and conventional inocula, varied between particular wheat cultivars. Inoculation growth response of the cultivar Pikker (released in 1959) was the most positive, while that of the cultivar Arabella (released in 2012) was the most negative. The use of AM fungal inoculum from organic fields resulted in slightly taller plant individuals. Pikker showed relatively higher yield and stronger growth when the organic AM fungal inoculum was used. Arabella exhibited relatively lower yield and weaker growth when the organic inoculum was used. Whether the positive response of Pikker to Estonian organic inoculation reflects adaptation to the locally occurring AM fungal community needs to be established by further studies of the communities of AM fungi colonizing wheat roots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7259642 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233878 | PLOS |
ACS Appl Mater Interfaces
September 2025
Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, Rostock 18059, Germany.
Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.
View Article and Find Full Text PDFWater Res
August 2025
State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.
View Article and Find Full Text PDFAdv Mater
September 2025
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.
The exponential growth of data in the information era has pushed conventional optical communication technology to its limitations, including inefficient spectral utilization, slow data rate, and inherent security vulnerabilities. Here, a transformative high-speed organic spectral wireless communication (SWC) technology enabled by a flexible, miniaturized, and high-performance organic hyperspectrometer is proposed that integrates ultrahigh-speed data transmission with hardware-level encryption. By synergistically combining organic photodetector arrays with tunable responsivities and spectral-tunable organic filters, the organic hyperspectrometer achieves a broad spectral detection range of 400 to 900 nm, resolution of 1.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory of Agricultural and Forestry Biosecurity & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:
Rice bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) significantly reduces rice yield and quality. Traditional chemical control methods often have limited efficacy and raise environmental concerns, highlighting the need for safer and more effective alternatives.
View Article and Find Full Text PDF