Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In view of the valorisation of the green microalga biomass, it was used for the biosorption of two nonsteroidal anti-inflammatory drugs, namely salicylic acid and ibuprofen, from water. Microalgae biomass was characterized, namely by the determination of the point of zero charge (pH), by Fourier transform infrared (FT-IR) analysis, simultaneous thermal analysis (STA) and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). Kinetic and equilibrium batch experiments were carried out and results were found to fit the pseudo-second order equation and the Langmuir isotherm model, respectively. The Langmuir maximum capacity determined for salicylic acid (63 mg g) was larger than for ibuprofen (12 mg g), which was also verified for a commercial activated carbon used as reference (with capacities of 250 and 147 mg g, respectively). For both pharmaceuticals, the determination of thermodynamic parameters allowed us to infer that adsorption onto microalgae biomass was spontaneous, favourable and exothermic. Furthermore, based on the biomass characterization after adsorption and energy associated with the process, it was deduced that the removal of salicylic acid and ibuprofen by biomass occurred by physical interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277159PMC
http://dx.doi.org/10.3390/ijerph17103707DOI Listing

Publication Analysis

Top Keywords

salicylic acid
12
nonsteroidal anti-inflammatory
8
anti-inflammatory drugs
8
acid ibuprofen
8
microalgae biomass
8
biomass
5
green microalgae
4
microalgae utilization
4
utilization adsorptive
4
adsorptive removal
4

Similar Publications

A novel label-free NIR aptasensor based on triphenylmethane dyes for rapid detection of salicylic acid.

Anal Methods

September 2025

Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China.

Salicylic acid (SA) is a critical phytohormone involved in plant growth, development, and defense responses, making its precise quantification essential for both agricultural management and environmental monitoring. Here, we report a novel label-free near-infrared aptasensor (NIRApt) for the rapid and sensitive detection of SA, utilizing a rationally selected triphenylmethane (TPM) dye. Through systematic screening, ethyl violet (EV) was identified as the optimal fluorophore, showing pronounced fluorescence enhancement upon binding to a SA-specific aptamer.

View Article and Find Full Text PDF

Nonexpressor of pathogenesis-related genes 1 (NPR1) is a master regulator of salicylic acid (SA)- facilitated plant hormone signaling and plays a crucial role in plant defense through the activation of systemic acquired resistance (SAR). Although like genes are associated with stress responses in a variety of plant species, no thorough genome-wide investigation of these genes has been undertaken in pearl millet (). This study discovered seven -like genes on four pearl millet chromosomes (Chr1, Chr2, Chr4, and Chr6), which exhibit close affinity to NPRs from other plants and have common gene structures, conserved motifs, and domains.

View Article and Find Full Text PDF

Functional analysis of three peroxisomal cinnamate:CoA ligases in salicylic acid biosynthesis of Glycine max.

Plant Physiol Biochem

September 2025

Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China; China-Mozambique "Belt and Road" Joint Laboratory on Smart Agriculture, Jinhua, 321004, China. Electronic address:

Salicylic acid (SA), a phenolic-derived secondary metabolite, serves as a critical signaling molecule in plant defense mechanisms. Contemporary phytochemical studies have identified two distinct biosynthetic pathways for SA production in plants: the isochorismate synthase (ICS)-mediated pathway and the phenylalanine ammonia-lyase (PAL)-dependent pathway. However, the enzymes participating in SA biosynthesis in soybean remain largely unknown.

View Article and Find Full Text PDF

Plants are constantly exposed to environmental changes and must respond carefully to ensure survival and growth. Under high temperatures, many plants exhibit a series of morphological and developmental adjustments, including increased hypocotyl and petiole elongation. These adaptations, collectively termed thermomorphogenesis, promote transpiration and water loss, thereby enhancing evaporative cooling.

View Article and Find Full Text PDF

Salicylic acid (SA), a long-characterized defense hormone, is increasingly recognized for its roles in plant growth and development. However, its involvement in mediating plant growth responses to environmental cues remains less understood. Here, we show that SA negatively affects thermomorphogenic growth in Arabidopsis thaliana.

View Article and Find Full Text PDF