98%
921
2 minutes
20
Tuning the optical and electrical properties by stacking different layers of two-dimensional (2D) materials enables us to create unusual physical phenomena. Here, we demonstrate an alternative approach to enhance charge separation and alter physical properties in van der Waals heterojunctions with type-II band alignment by using thin dielectric spacers. To illustrate our working principle, we implement a hexagonal boron nitride (h-BN) sieve layer in between an InSe/GeS heterojunction. The optical transitions at the junctions studied by photoluminescence and the ultrafast pump-probe technique show quenching of emission without h-BN layers exhibiting an indirect recombination process. This quenching effect due to strong interlayer coupling was confirmed with Raman spectroscopic studies. In contrast, h-BN layers in between InSe and GeS show strong enhancement in emission, giving another degree of freedom to tune the heterojunction property. The two-terminal photoresponse study supports the argument by showing a large photocurrent density for an InSe/h-BN/GeS device by avoiding interlayer charge recombination. The enhanced charge separation with h-BN mediation manifests a photoresponsivity and detectivity of 9 × 10 A W and 3.4 × 10 Jones, respectively. Moreover, a photogain of 1.7 × 10 shows a high detection of electrons for the incident photons. Interestingly, the photovoltaic short-circuit current is switched from positive to negative, whereas the open-circuit voltage changes from negative to positive. Our proposed enhancement of charge separation with 2D-insulator mediation, therefore, provides a useful route to manipulate the physical properties of heterostructures and for the future development of high-performance optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c06077 | DOI Listing |
J Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China.
Photocatalysis holds significant promise for the reduction of CO to valued chemicals under mild conditions. However, its potential is severely limited by weak CO adsorption and slow proton-coupled electron transfer (PCET) rates. In this work, ZnInS-based catalysts with varying hydroxyl contents were synthesized via the solvothermal method.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
Visible-light-responsive Rh/Sb co-doped SrTiO with engineered {100}/{110} facets (STO:RS(NaCl)) was synthesized flux-assisted crystallization. Facet-dependent spatial charge separation, driven by work function differences, enabled electrons and holes to migrate to the respective facets. This configuration tripled photocatalytic hydrogen evolution non-faceted STO:RS(w/o), overcoming the limitations of ultraviolet-only absorption and inefficient charge separation.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China. Electronic address:
Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:
Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).
View Article and Find Full Text PDF