Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles.

J Environ Manage

School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Jindalai Environmental Protection Co., Ltd, Jiangxi, 330100, China; Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, Ch

Published: August 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effects of pH, cation valence, and ionic strength (IS) on the stability and aggregation behavior of zinc oxide nanoparticles (ZnO NPs) were investigated in this study. Results showed that ZnO NPs were most prone to aggregation at the isoelectric point (pH = 8.7), with an aggregation rate (ΔD/Δt) of 30.1. ZnO NPs showed a greater propensity for dissolution at lower pH (pH < 7), and Zn was more rapidly released into the aqueous phase in acidic solutions than neutral or alkaline conditions. The C/C of ZnO NPs was about 21.56% and remained stable in acidic solution of pH 4.0. Additionally, slow sedimentation with a C/C ratio of 95.0% was observed due to an increase in repulsive interactions between nanoparticles under pH = 10. The effect of cations on the ΔD/Δt of ZnO NPs decreased in strength as follows: Ca > Mg > K > Na. High-valence metal cations (Ca, Mg) were more competitively adsorbed onto the surface of ZnO NPs with a hydrogen atom due to Coulomb's law, increasing the zeta potential and stabilizing the suspension of ZnO NPs at IS < 10 mM. Furthermore, compression of the electric double layer (EDL) became stronger than electrostatic adsorption with increasing IS, reaching a maximum ΔD/Δt of 23.3 (Ca, pH = 7, IS = 1 M). The C/C ratio of ZnO NPs decreased from 100% to 56.5% (Na), 52.2% (K), 45.2% (Mg), and 40.1% (Ca) at pH = 7 and an IS of 0.5 M. In addition to the cation valence, the hydration forces and ionic radii of the metal cations might be other factors that affected the interactions of metal cations with ZnO NPs. Finally, the total interaction energy between ZnO NPs was calculated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical formula, and the calculated results were in agreement with the experimental outcomes under various aquatic environmental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.110656DOI Listing

Publication Analysis

Top Keywords

zno nps
20
cation valence
8
valence ionic
8
ionic strength
8
strength stability
8
stability aggregation
8
aggregation behavior
8
behavior zinc
8
zinc oxide
8
oxide nanoparticles
8

Similar Publications

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

The emergence of new types of pollutants and the increase of anthropogenic load on the environment provoked an increased interest of researchers to study the toxic effects of pollutants on living organisms. This study is devoted to investigate the physiological response of the Black Sea phytoplankton community to the effects of ZnO, CuO and TiO nanoparticles (NPs) of different concentrations by creating in vitro model microcosms. Trends of changes in the ratio between phytoplankton groups (cyanobacteria-picoeukaryotic algae-nano-microphytoplankton), species composition, growth rates and functional state of cells under the influence of the studied nanoparticles were revealed.

View Article and Find Full Text PDF

Novel dual responsive embelin functionalised ZnO nanomaterials amplify DNA damage and induce apoptosis via pERK1/2/p53 pathway in pancreatic ductal adenocarcinoma.

Biomater Adv

August 2025

Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta 577451, Karnataka, India. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor prognosis and chemoresistance. Nano-bioconjugates, due to their enhanced surface-to-volume ratio, offer significant potential in cancer therapy. In this study, we synthesized ZnO nanoparticles (NPs) using solution combustion method and exhibited a particle size range of 20-70 nm as confirmed by TEM analysis.

View Article and Find Full Text PDF

Introduction: Chemotherapy faces limitations such as toxicity and resistance, necessitating novel cancer treatments. Green-synthesized zinc oxide nanoparticles (ZnO-NPs) have attracted attention for their safety, biocompatibility, and therapeutic potential. This study investigates the anticancer efficacy of ZnO-NPs synthesized using the extracellular matrix of Aspergillus biplanus against colorectal cancer cell lines (HCT-116).

View Article and Find Full Text PDF

Zinc oxide (ZnO) nanostructures with deposited silver (Ag) nanoparticles (NPs) exhibit exceptional opportunities for highly sensitive molecular diagnostics by means of the Surface-Enhanced Raman Scattering (SERS). Here we use the well known method of the hydrothermal synthesis of arrays of ZnO nanorods (NRs), followed with deposition of Ag-NPs by facile photochemical reduction under UV-light illumination to obtain ZnO-NRs/Ag-NPs hybrid structures with superior SERS activity. SERS spectra of a probe analyte, i.

View Article and Find Full Text PDF