98%
921
2 minutes
20
Although several crystalline materials have been developed as Li-ion conductors for use as solid electrolytes in all-solid-state batteries (ASSBs), producing materials with high Li-ion conductivities is time-consuming and cost-intensive. Herein, we introduce a superionic halogen-rich Li-argyrodite (HRLA) and demonstrate its innovative synthesis using ultimate-energy mechanical alloying (UMA) and rapid thermal annealing (RTA). UMA with a 49 G-force milling energy provides a one-pot process that includes mixing, glassification, and crystallization, to produce as-milled HRLA powder that is ∼70% crystallized; subsequent RTA using an infrared lamp increases this crystallinity to ∼82% within 25 min. Surprisingly, this HRLA exhibits the highest Li-ion conductivity among Li-argyrodites (10.2 mS cm at 25 °C, cold-pressed powder compact) reported so far. Furthermore, we confirm that this superionic HRLA works well as a promising solid electrolyte without a decreased intrinsic electrochemical window in various electrode configurations and delivers impressive cell performance (114.2 mAh g at 0.5 C).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b04597 | DOI Listing |
Angew Chem Int Ed Engl
December 2023
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Nano Lett
April 2020
Center for Energy Materials Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.