Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Targeted insertion of transgenes at pre-determined plant genomic safe harbors provides a desirable alternative to insertions at random sites achieved through conventional methods. Most existing cases of targeted gene insertion in plants have either relied on the presence of a selectable marker gene in the insertion cassette or occurred at low frequency with relatively small DNA fragments (<1.8 kb). Here, we report the use of an optimized CRISPR-Cas9-based method to achieve the targeted insertion of a 5.2 kb carotenoid biosynthesis cassette at two genomic safe harbors in rice. We obtain marker-free rice plants with high carotenoid content in the seeds and no detectable penalty in morphology or yield. Whole-genome sequencing reveals the absence of off-target mutations by Cas9 in the engineered plants. These results demonstrate targeted gene insertion of marker-free DNA in rice using CRISPR-Cas9 genome editing, and offer a promising strategy for genetic improvement of rice and other crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055238PMC
http://dx.doi.org/10.1038/s41467-020-14981-yDOI Listing

Publication Analysis

Top Keywords

gene insertion
12
targeted gene
8
marker-free carotenoid-enriched
4
carotenoid-enriched rice
4
rice generated
4
generated targeted
4
insertion
4
insertion crispr-cas9
4
crispr-cas9 targeted
4
targeted insertion
4

Similar Publications

Several genes in the mitochondria of angiosperms are interrupted by introns, and their posttranscriptional excision involves numerous nucleus-encoded auxiliary factors. Most of these factors are of eukaryotic origin, among them members of the pentatricopeptide-repeat (PPR) family of RNA-binding proteins. This family divides into the PLS and P classes, with PLS-class proteins typically participating in C-to-U mRNA editing and P-class members contributing to transcript stabilization and intron splicing.

View Article and Find Full Text PDF

Background: A significant surge in pertussis cases since early 2023 has raised serious public health concerns. To investigate the potential mechanisms contributing to this increased prevalence, we collected throat swab specimens from children exhibiting pertussis symptoms and conducted detailed molecular characterization.

Methods: All Bordetella pertussis (B.

View Article and Find Full Text PDF

Black pod disease, caused by a complex of Phytophthora species, poses a severe threat to global cacao production. This study explores the use of CRISPR-Cas9 genome editing to reduce disease susceptibility in Theobroma cacao L. by targeting the TcNPR3 gene, a known negative regulator of plant defence.

View Article and Find Full Text PDF

Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements prevalent in eukaryotic genomes, contributing to various genomic and genic functions in plants. However, research on MITEs mainly targets a few species, limiting a comprehensive understanding and systematic comparison of MITEs in plants. Here, we developed a highly sensitive MITE annotation pipeline with a low false positive rate and applied it to 207 high-quality plant genomes.

View Article and Find Full Text PDF

Independent evolutionary deterioration of the oxygen-transport system in Asian noodlefishes and Antarctic icefishes.

Curr Biol

July 2025

Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China. Electronic address: jinxianliu@gmail

Determination of evolutionary mechanisms underlying innovative traits is crucial for understanding the vast diversity of species and phenotypes. Given their respiratory physiologies, fishes are compelling subjects for evolutionary analysis of the hemoprotein-based oxygen-transport systems. Asian noodlefishes (Osmeriformes: Salangidae) and Antarctic icefishes (Notothenioidei: Channichthyidae) are examples of fish clades that generally do not express myoglobin or hemoglobin.

View Article and Find Full Text PDF