98%
921
2 minutes
20
Photosynthesis is currently measured using time-laborious and/or destructive methods which slows research and breeding efforts to identify crop germplasm with higher photosynthetic capacities. We present a plot-level screening tool for quantification of photosynthetic parameters and pigment contents that utilizes hyperspectral reflectance from sunlit leaf pixels collected from a plot (~2 m×2 m) in <1 min. Using field-grown Nicotiana tabacum with genetically altered photosynthetic pathways over two growing seasons (2017 and 2018), we built predictive models for eight photosynthetic parameters and pigment traits. Using partial least squares regression (PLSR) analysis of plot-level sunlit vegetative reflectance pixels from a single visible near infra-red (VNIR) (400-900 nm) hyperspectral camera, we predict maximum carboxylation rate of Rubisco (Vc,max, R2=0.79) maximum electron transport rate in given conditions (J1800, R2=0.59), maximal light-saturated photosynthesis (Pmax, R2=0.54), chlorophyll content (R2=0.87), the Chl a/b ratio (R2=0.63), carbon content (R2=0.47), and nitrogen content (R2=0.49). Model predictions did not improve when using two cameras spanning 400-1800 nm, suggesting a robust, widely applicable and more 'cost-effective' pipeline requiring only a single VNIR camera. The analysis pipeline and methods can be used in any cropping system with modified species-specific PLSR analysis to offer a high-throughput field phenotyping screening for germplasm with improved photosynthetic performance in field trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7134947 | PMC |
http://dx.doi.org/10.1093/jxb/eraa068 | DOI Listing |
BMC Plant Biol
September 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Comprehensive Utilization of Crops, Fuzhou, 350002, China.
Melon, a globally important horticultural crop, faces increasing continuous cropping obstacles (CCOs) due to cultivation intensification, with autotoxicity being a primary cause. Autotoxin accumulation severely impacts plant growth, reducing yield and quality. Exogenous silicon (Si) plays an important role in improving plant stress adaptation and is an environmentally friendly element with broad application prospects.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Animal and Plant Biology, State University of Londrina (UEL), Londrina, Paraná 86057-970, Brazil.
Previous work has shown that nanoencapsulation of atrazine enhances the herbicidal action of this active ingredient. This increased activity is expected to control weeds and not compromise the tolerance of maize plants to the herbicide. This study aimed to evaluate the tolerance of maize plants to atrazine in postemergence application with different nanoformulations.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
Nanchang Institute of Technology, Nanchang, China.
The scarcity of natural citral has spurred interest in its alternative sources such as the essential oil-rich branches and leaves of citral balsam fir. This study assessed the impact of nitrate, ammonium, and amide nitrogen forms at varying concentrations on the growth, development, and soil bacterial diversity of 1-year-old Cinnamomum camphora ct. citral seedlings.
View Article and Find Full Text PDFPhotosynth Res
September 2025
Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, 00014, Finland.
Pulse-amplitude modulated (PAM) chlorophyll fluorescence (ChlF) measurements provide a non-invasive method to study the regulation of the light reactions of photosynthesis in situ. PAM ChlF contributes also to the advancement of the interpretation of long-term observations of remotely sensed solar induced fluorescence by revealing the mechanistic connection between ChlF and photosynthetic function. However, long-term field PAM ChlF measurements remain uncommon due to challenges associated with the outdoor environment, instrument installation and maintenance, or data processing and interpretation.
View Article and Find Full Text PDF