Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The increasing freshwater ecosystem nutrient budget is a critical anthropogenic factor promoting freshwater eutrophication and episodic bloom of harmful algae which threaten water quality and public health. To understand how the eutrophic freshwater ecosystem responds in term of phytoplankton community structure dynamics to a sudden rise in nutrient concentrations, a microcosm study by nutrient addition bioassay was implemented in Xiangxi Bay (XXB) of Three Gorges Reservoir, China. Our results showed that dissolved trace elements supply adequately altered the phytoplankton community structure creating a regime shift from cyanobacteria-dominated to essentially Chlorophytes-dominated system, relative abundance (>70%). Combined N, P, and Si led to maximum growth stimulation accompanied by the highest chlorophyll yield (82.7 ± 14.01 μgL) and growth rate (1.098 ± 0.12 μgLd). N separate additions resulted in growth responses which did not differ while P -addition differed significantly (p∠0.05) with the control justifying a P limited system. Si enrichment stimulated diatom growth, relative abundance (20.62%) and maximum utility rate (U = 83.37 ± 0.33%). This study also reveals that increasing nutrient loading from anthropogenic sources adequately decrease the ecological diversity (H < 1) and community overlap (CC ≤ 0.5) intensifying competition and succession which then select the fast-growing taxa to dominate and expand. Result points to the need for multiple nutrient control of N, P and Si loading into XXB through a prudent nutrient management protocol for lasting bloom mitigation in the tributary bay.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.125960DOI Listing

Publication Analysis

Top Keywords

phytoplankton community
12
community structure
12
nutrient addition
8
addition bioassay
8
xiangxi bay
8
three gorges
8
gorges reservoir
8
reservoir china
8
freshwater ecosystem
8
relative abundance
8

Similar Publications

Marine heatwaves (MHWs) are increasing in frequency and intensity worldwide, significantly impacting marine ecosystems. However, studies on phytoplankton community changes in coastal waters under such conditions remain. In the summer of 2024, an extreme high-temperature event (>28 °C) occurred in the southern coastal waters of Korea, providing an opportunity to investigate phytoplankton community dynamics under thermal stress.

View Article and Find Full Text PDF

Phytoplankton, as primary producers, play a key role in aquatic ecosystems. Their community turnover is shaped by morphological traits that enable adaptation to diverse abiotic and biotic factors. Yet, the temporal scale of these dynamics remains poorly understood due to limited high-frequency sampling studies.

View Article and Find Full Text PDF

Environmental Drivers of Phytoplankton Structure in a Semi-Arid Reservoir.

Biology (Basel)

July 2025

College of Life Sciences and Technology, Tarim Research Center of Rare Fishes, State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Tarim University, Alar 843300, China.

Artificial reservoirs in arid regions provide unique ecological environments for studying the spatial and functional dynamics of plankton communities under the combined stressors of climate change and anthropogenic activities. This study conducted a systematic investigation of the phytoplankton community structure and its environmental drivers in 17 artificial reservoirs in the Ili region of Xinjiang in August and October 2024. The Ili region is located in the temperate continental arid zone of northwestern China.

View Article and Find Full Text PDF

River planktonic microeukaryotes (phytoplankton and zooplankton) underpin aquatic ecosystem function, yet how environmental change regulates their biodiversity via assembly mechanisms remains poorly understood. Using eDNA metabarcoding along China's Beipan River, partitioned by a barrier dam into environmentally heterogeneous upstream and stable downstream regions, we assessed plankton diversity and the roles of dispersal and environmental selection. Phytoplankton exhibited higher alpha- and beta-diversity than zooplankton, attributed to stronger dispersal but weaker selection.

View Article and Find Full Text PDF

Ecological pattern of microalgal communities and associated risks in coastal ecosystems.

ISME Commun

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China.

Eukaryotic harmful and toxic microalgae, along with their derived toxins, pose significant threats to seafood safety, human health, and marine ecosystems. Here, we developed a novel full-length 18S rRNA database for harmful and toxic microalgae and combined metabarcoding with toxin analyses to investigate the ecological patterns of phytoplankton communities and the underlying mechanism of associated toxic microalgae risks. We identified 79 harmful and toxic species in Hong Kong's coastal waters, with dinoflagellates and diatoms representing the majority of toxic and harmful taxa, respectively.

View Article and Find Full Text PDF