98%
921
2 minutes
20
The study of nucleation in fluid mixtures exposes challenges beyond those of pure systems. A striking example is homogeneous condensation in highly surface-active water-alcohol mixtures, where classical nucleation theory yields an unphysical, negative number of water molecules in the critical embryo. This flaw has rendered multicomponent nucleation theory useless for many industrial and scientific applications. Here, we show that this inconsistency is removed by properly incorporating the curvature dependence of the surface tension of the mixture into classical nucleation theory for multicomponent systems. The Gibbs adsorption equation is used to explain the origin of the inconsistency by linking the molecules adsorbed at the interface to the curvature corrections of the surface tension. The Tolman length and rigidity constant are determined for several water-alcohol mixtures and used to show that the corrected theory is free of physical inconsistencies and provides accurate predictions of the nucleation rates. In particular, for the ethanol-water and propanol-water mixtures, the average error in the predicted nucleation rates is reduced from 11-15 orders of magnitude to below 1.5. The curvature-corrected nucleation theory opens the door to reliable predictions of nucleation rates in multicomponent systems, which are crucial for applications ranging from atmospheric science to research on volcanos.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.045701 | DOI Listing |
J Colloid Interface Sci
September 2025
State Key Laboratory of Hydro Science and Engineering, and Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China. Electronic address:
Hypothesis: On highly cleaned planar surfaces submerged in highly cleaned water, flat surface nanobubbles with an angle of attachment of ∼15 are observed - never on engineering surfaces submerged in plain water, though here unidentified cavitation nuclei are always present and cause low tensile strength.
Experiments: In the present study, surface nanobubbles are generated by standard experimental techniques on a polished steel surface, and we find that the shape and the angles of attachment of the bubbles are influenced by the local substrate topography. These observations align with the theory of non-adsorbed liquid zones, which explains a surface nanobubble as a bubble with a skin of contamination molecules, which bond along the bubble rim at a contact angle of ∼14.
Angew Chem Int Ed Engl
September 2025
Yunnan Key Laboratory of Non-ferrous Metals Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China.
To address palladium supply-demand challenges and conventional recovery inefficiencies, this study develops a lithium-mediated electrodeposition process for efficient palladium recycling from spent catalysts. Density functional theory calculations identified a controlled Pd→LiPd (Pd)→LiPdO (Pd) transformation pathway, and experimental verification confirmed that LiPd precursors underwent oxidative transformation into LiPdO with structural inheritance. LiPdO exhibited Pd-O coordination and underwent rapid dissolution in dilute hydrochloric acid.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Understanding and controlling the nucleation and growth processes of gold clusters are crucial for advancing the nucleation theory and targeted cluster synthesis. While mass spectrometry has revealed the intermediate species formed during the growth process, the overall structural evolution remains unclear due to a lack of crystallographic information. In this study, we examined a new synthetic method for thiolate-protected gold clusters in their embryonic stage.
View Article and Find Full Text PDFNano Lett
September 2025
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China.
Molybdenum oxides (MOs) exhibit rich polymorphism and tunable properties, yet their phase transformation pathways are poorly understood. Here, we employ in situ environmental transmission electron microscopy (TEM) to reveal a direct reduction of MoO to metallic Mo, bypassing known intermediate phases such as MoO and MoO. Surface nucleation begins at approximately 800 °C and is completed at 900 °C.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Chemistry and Environmental Sciences, The BioSMART Center, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States.
Herein, we demonstrate the growth pattern and mechanism of copper nanocubes (CuNCs) on the surface of biodegradable polyamic acid (PAA) film as a function of applied potential. The PAA solution was fabricated via a poly condensation reaction between 4,4'-oxidianiline (ODA) and pyromellitic dianhydride (PMDA) in dimethylacetamide (DMAC) at 25 °C. The resulting viscous PAA solution was drop-cast on a glassy carbon electrode (PAA|GCE) and dried at room temperature.
View Article and Find Full Text PDF