Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The radiation of angiosperms led to the emergence of the vast majority of today's plant species and all our major food crops. Their extraordinary diversification occurred in conjunction with the evolution of a more efficient vascular system for the transport of water, composed of vessel elements. The physical dimensions of these water-conducting specialized cells have played a critical role in angiosperm evolution; they determine resistance to water flow, influence photosynthesis rate, and contribute to plant stature. However, the genetic factors that determine their dimensions are unclear. Here we show that a previously uncharacterized gene, () contributes to the dimensions of vessel elements in , impacting hydraulic conductivity. Our data suggest that is localized in the plasma membrane and is involved in potassium uptake of differentiating xylem cells during vessel development. In plants, first emerged in streptophyte algae, but expanded dramatically among vessel-containing angiosperms. The phylogeny, structure and composition of indicates that it may have been involved in an ancient horizontal gene-transfer event.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060721PMC
http://dx.doi.org/10.1073/pnas.1912434117DOI Listing

Publication Analysis

Top Keywords

uncharacterized gene
8
gene contributes
8
vessel elements
8
vessel
4
contributes vessel
4
vessel element
4
dimensions
4
element dimensions
4
dimensions radiation
4
radiation angiosperms
4

Similar Publications

Introduction: leaves (FSL), a traditional Chinese ethnomedicinal herbal material used to prepare health-promoting infusions and pharmacologically noted for their robust anti-inflammatory, antioxidant, and broad-spectrum antiviral activities, nevertheless have an as-yet-uncharacterized molecular mechanism of action against human adenovirus (HAdV).

Methods: Ultra-high-performance liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive-Orbitrap/MS) was employed to identification of FSL components. Publicly available GEO datasets were mined to identify HAdV-associated differentially expressed genes (DEGs).

View Article and Find Full Text PDF

Cryo-EM Study and In Vivo Chemical Mapping of the Methanosarcina acetivorans Ribosome and Its Dimerization via a Repurposed Enzyme and Translation Factor.

J Biol Chem

September 2025

Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, 16802; Center for Structural Biology, Penn State University, University Park, PA 16802; Center for RNA Molecular Biology, Penn State University, University Park, PA 16802. Electronic address:

Despite the overall conservation of ribosomes across all domains of life, differences in their 3D architecture, rRNA sequences, ribosomal protein composition, and translation factor requirements reflect lineage-specific adaptations to environmental niches. In the domain Archaea, structural studies have primarily focused on non-methanogenic thermophiles and halophiles, leaving it unclear whether these represent the broader archaeal domain. Here, we report the cryo-electron microscopy (cryo-EM) structure of the ribosome from Methanosarcina acetivorans, a previously unreported high-resolution structure from a model mesophilic methanogenic archaeon.

View Article and Find Full Text PDF

LlLRP1, an SHI/SRS transcription factor, mediates bulbil formation in Lilium lancifolium via regulation by LlWOX11 and response to NaCl stress.

Int J Biol Macromol

September 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, Yunnan, 650224, China. Electronic address: mingju

Bulbil formation in Lilium lancifolium represents a pivotal vegetative reproduction strategy, yet the transcriptional regulatory network governing this process remains largely uncharacterized. Here, we identify LlLRP1 by full-length cloning, sequence analysis and subcellular localization, an SHI/SRS family transcription factor, as a key mediator of bulbil morphogenesis. Transcriptomic profiling revealed that LlLRP1 is a downstream target of LlWOX11, with its promoter harboring conserved binding motifs (AAAG, AGTA) validated by yeast one-hybrid, dual-luciferase reporter, and electrophoretic mobility shift assays.

View Article and Find Full Text PDF

The ubiquitin-proteasome system is a highly conserved machinery that plays a crucial role in plant defense against viruses. However, the number of E3 ligases targeting viral proteins remains limited. Although RING-between-RING (RBR)-type E3 ligases are evolutionarily conserved across organisms, their functions in plant responses to biotic stress remain largely unknown.

View Article and Find Full Text PDF

Fibrillins (FBNs) are indispensable for plant growth and development, orchestrating multiple physiological processes. However, the precise functional role of in cotton fiber development remains uncharacterized. This study reports a genome-wide characterization of the gene family in cotton.

View Article and Find Full Text PDF