98%
921
2 minutes
20
Background: Despite a growing number of investigations on early diverging fungi, the corresponding lineages have not been as extensively characterized as Ascomycota or Basidiomycota ones. The Mucor genus, pertaining to one of these lineages is not an exception. To this date, a restricted number of Mucor annotated genomes is publicly available and mainly correspond to the reference species, Mucor circinelloides, and to medically relevant species. However, the Mucor genus is composed of a large number of ubiquitous species as well as few species that have been reported to specifically occur in certain habitats. The present study aimed to expand the range of Mucor genomes available and identify potential genomic imprints of adaptation to different environments and lifestyles in the Mucor genus.
Results: In this study, we report four newly sequenced genomes of Mucor isolates collected from non-clinical environments pertaining to species with contrasted lifestyles, namely Mucor fuscus and Mucor lanceolatus, two species used in cheese production (during ripening), Mucor racemosus, a recurrent cheese spoiler sometimes described as an opportunistic animal and human pathogen, and Mucor endophyticus, a plant endophyte. Comparison of these new genomes with those previously available for six Mucor and two Rhizopus (formerly identified as M. racemosus) isolates allowed global structural and functional description such as their TE content, core and species-specific genes and specialized genes. We proposed gene candidates involved in iron metabolism; some of these genes being known to be involved in pathogenicity; and described patterns such as a reduced number of CAZymes in the species used for cheese ripening as well as in the endophytic isolate that might be related to adaptation to different environments and lifestyles within the Mucor genus.
Conclusions: This study extended the descriptive data set for Mucor genomes, pointed out the complexity of obtaining a robust phylogeny even with multiple genes families and allowed identifying contrasting potentially lifestyle-associated gene repertoires. The obtained data will allow investigating further the link between genetic and its biological data, especially in terms of adaptation to a given habitat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011435 | PMC |
http://dx.doi.org/10.1186/s12864-019-6256-2 | DOI Listing |
Am J Case Rep
September 2025
Department of Medicine, Infectious Disease Section, King Fahad Specialist Hospital, Dammam, Saudi Arabia.
BACKGROUND Gastrointestinal mucormycosis is an underrecognized and underreported fungal infection with a high mortality rate. Diagnosis is often confounded by a non-specific constellation of signs and symptoms. We present a case of neutropenic colitis and ileocecal perforation secondary to gastrointestinal mucormycosis.
View Article and Find Full Text PDFBiotechnol Lett
September 2025
Shandong Provincial Engineering Research Center for Precision Nutrition and Healthy Elderly Care, Qilu Medical University, 1678 Renmin West Road, Zibo, 255300, People's Republic of China.
Fatty acid synthase (FAS) is one of the most important enzymes in lipid biosynthesis, which can catalyze the reaction of acetyl-CoA and malonyl-CoA to produce fatty acids. However, the structure, function, and molecular mechanism of FAS regulating lipid synthesis in the fungus Mucor circinelloides are unclear. In the present study, two encoding fas genes in the high lipid-producing strain WJ11 and low lipid-producing strain CBS277.
View Article and Find Full Text PDFFungal Biol
October 2025
Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China; School of Basic Medicine, Qilu Medical University, Zibo, 255300, Shandong, China. Electronic address:
Oleaginous filamentous fungus Mucor circinelloides harbors a GATA transcription activator AreA, which regulates nitrogen metabolism. In our previous study, deletion of AreA resulted in increased lipid production, while its overexpression reduced lipid synthesis. Although it is not a direct lipogenesis regulator, AreA influences metabolic flux by modulating nitrogen utilization pathways, which in turn affects carbon distribution.
View Article and Find Full Text PDFG3 (Bethesda)
September 2025
Norwegian University of Life Sciences, 1433 Ås, Norway.
Fungi are pivotal in transitioning to a bio-based, circular economy due to their ability to transform organic material into valuable products such as organic acids, enzymes, and drugs. Mucor circinelloides is a model organism for studying lipogenesis and is particularly promising for its metabolic capabilities in producing oils like TAGs and carotenoids, influenced by environmental factors such as nutrient availability. Notably, strains VI04473 and FRR5020 have been identified for their potential in producing single-cell oils and carotenoids, respectively.
View Article and Find Full Text PDFMed Mycol
September 2025
Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.
Mucormycosis is predominantly caused by members of the genera Lichtheima, Mucor, and Rhizopus. Here, we report the genome assemblies and comparative analyses of the clinically relevant species Mucor ardhlaengiktus (CBS 210.80), Mucor circinelloides (CBS 195.
View Article and Find Full Text PDF