Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Context: Adenosine 5'-monophosphate-activated protein kinase-α (AMPKα) is a mediator of exercise-induced glucose uptake in skeletal muscle.

Objective: We evaluated whether AMPKα expression and phosphorylation are reduced in skeletal muscle and adipose tissue of patients with hypogonadotropic hypogonadism (HH), and whether testosterone replacement therapy results in restoration of the expression and phosphorylation of AMPKα.

Design: This is a secondary analysis of a previously completed trial that showed an insulin-sensitizing effect of testosterone therapy in men with type 2 diabetes and HH.

Setting: Clinical research center at university.

Patients: Thirty-two men with HH and 32 eugonadal men were compared at baseline.

Interventions: Men with HH were treated with intramuscular injections of testosterone or placebo every 2 weeks for 22 weeks. Quadriceps muscle biopsies and subcutaneous abdominal fat biopsies were obtained before and after 4-hour euglycemic hyperinsulinemic clamp, prior to and after testosterone or placebo therapy.

Outcome Measures And Results: mRNA expression of AMPKα in hypogonadal men was lower by 37% in adipose tissue and 29% in skeletal muscle, respectively, compared with levels in eugonadal men, while phosphorylated AMPKα was lower by 22% and 28%, respectively. Following testosterone replacement, the expression of AMPKα did not alter in the fasting state but increased markedly by 41% and 46% in adipose tissue and muscle, respectively, after the clamp. In contrast, phosphorylated AMPKα increased by 69% in muscle after testosterone therapy but did not change following the clamp.

Conclusions: Testosterone modulates the expression of AMPKα and phosphorylated AMPKα. These effects may contribute to the improved insulin sensitivity following testosterone therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077952PMC
http://dx.doi.org/10.1210/clinem/dgz288DOI Listing

Publication Analysis

Top Keywords

expression phosphorylation
12
adipose tissue
12
testosterone therapy
12
expression ampkα
12
phosphorylated ampkα
12
testosterone
9
type diabetes
8
ampkα
8
skeletal muscle
8
testosterone replacement
8

Similar Publications

Transcriptional condensates enrich phosphorylated PRMT2 to stimulate H3R8me2a deposition and hypoxic response in glioblastoma.

Sci China Life Sci

September 2025

State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora

Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.

View Article and Find Full Text PDF

During a critical period of postnatal brain development, neural circuits undergo significant refinement coincident with widespread alternative splicing of hundreds of genes, which undergo altered splice site selection for the generation of isoforms essential for synaptic plasticity. Here, we reveal that neuronal activity-dependent phosphorylation of paxillin at its serine 119 (p-paxillin) acts as a molecular switch in the nucleus for the control of alternative splicing during this period. We show that following NMDA receptor activation, nuclear p-paxillin is recruited to nuclear speckles, where it interacts with splicing factors, such as U2AFs.

View Article and Find Full Text PDF

Nuclear glycine decarboxylase suppresses STAT1-dependent MHC-I and promotes cancer immune evasion.

EMBO J

September 2025

Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071, China.

Inadequate antigen presentation by MHC-I in tumor microenvironment (TME) is a common immune escape mechanism. Here, we show that glycine decarboxylase (GLDC), a key enzyme in glycine metabolism, functions as an inhibitor of MHC-I expression in EGFR-activated tumor cells to induce immune escape by a mechanism independent of its enzymatic activity. Upon EGFR activation, GLDC is phosphorylated by SRC and subsequently translocated to the nucleus in human NSCLC cells.

View Article and Find Full Text PDF

Frailty, often linked to sarcopenia, involves reduced muscle strength and mass. While sarcopenia has multiple causes, impaired muscle protein synthesis may contribute. Leucine and resistance training (RT) are anabolic stimuli, but the long-term effects of leucine combined with RT in pre/frail older women remain unclear.

View Article and Find Full Text PDF

Background: Activin A/Smad signaling plays an important role in promoting cancer stemness and chemoresistance in pancreatic ductal adenocarcinoma (PDAC), however the precise regulation on the termination of this pathway has not been fully understood.

Methods: LncRNA SLC7A11-AS1 interacting proteins were identified through RNA pull-down followed by LC-MS/MS. The protein interaction was analyzed by co-immunoprecipitation.

View Article and Find Full Text PDF