98%
921
2 minutes
20
Understanding the volume collapse phenomena in rare-earth materials remains an important challenge due to a lack of information on 4 electronic structures at different pressures. Here, we report the first high-pressure inelastic X-ray scattering measurement on elemental cerium (Ce) metal. By overcoming the ultralow signal issue in the X-ray measurement at the Ce -edge, we observe the changes of unoccupied 4 states across the volume collapse transition around 0.8 GPa. To help resolve the longstanding debate on the Anderson-Kondo and Mott-Hubbard models, we further compare the experiments with extended multiplet calculations that treat both screening channels on equal footing. The results indicate that a modest change in the 4-5 Kondo coupling can well describe the spectral redistribution across the volume collapse, whereas the hybridization between neighboring atoms in the Hubbard model appears to play a minor role. Our study helps to constrain the theoretical models and opens a promising new route for systematic investigation of volume collapse phenomena in rare-earth materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.9b02819 | DOI Listing |
Radiology
September 2025
Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background MRI-derived arrhythmogenic substrate, including late gadolinium enhancement (LGE) and extracellular volume fraction (ECV), is indicative of sudden cardiac death (SCD) risk in nonischemic dilated cardiomyopathy (DCM). The relative prognostic value of LGE and ECV remains unclear. Purpose To evaluate the performance of LGE and T1 mapping in predicting SCD in patients with DCM and to explore clinical implementation.
View Article and Find Full Text PDFESC Heart Fail
September 2025
Department of Cardiac-, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.
Aims: Non-pharmacological therapies for acute decompensated heart failure (HF) and cardiogenic shock have evolved considerably in recent decades. Short-term mechanical circulatory support (MCS) devices can be used as circulatory backup. While nearly all available devices use continuous flow, evidence indicates that pulsatile flow can be more effective.
View Article and Find Full Text PDFFood Res Int
November 2025
School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Anqing Yixiu Green Food Innovation Research Institute, Anqing 246000, PR China. Electronic address:
This study presents a biopreservation method using sourdough co-fermented with Fructilactobacillus sanfranciscensis and Propionibacterium freudenreichii, optimizing conditions to 220 hydration and 24 h fermentation. The composite sourdough bread quality was evaluated through physicochemical, storage, sensory, and microbial tests, with mechanisms analyzed based on microstructure, rheology, and dough structure. Results showed that: first, the composite sourdough enhanced bread physicochemical properties, increasing volume, height-to-diameter ratio, elasticity, and resilience, while reducing baking loss, hardness, chewiness, and adhesiveness.
View Article and Find Full Text PDFCureus
August 2025
Neuroanesthesia, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, IND.
Introduction: Maintaining hemodynamic stability during the perioperative period of major neurosurgical procedures is of paramount importance. A major challenge for anesthesiologists during hemodynamic fluctuations is identifying the underlying cause to guide appropriate therapy. Limited literature is available on the utility of transesophageal echocardiography (TEE) during hemodynamic fluctuations in major neurosurgery.
View Article and Find Full Text PDFACS Nano
September 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
The integration of Mn in NaMnFe(PO)PO (NMFPP) enhances the energy density but compromises the Na mobility and structural stability due to limited electron hopping and pronounced Jahn-Teller effects. To address this, a structurally compatible anionic substitution strategy is implemented by partially replacing PO with bulkier and less electronegative SiO groups. The reinforced cathode exhibits enhanced rate performance, which is attributed to lattice expansion induced by the larger SiO units, thereby facilitating Na diffusion and reducing impedance during charge-discharge processes, as supported by GITT and DRT analyses.
View Article and Find Full Text PDF