98%
921
2 minutes
20
SLC18B1 is a sister gene to the vesicular monoamine and acetylcholine transporters, and the only known polyamine transporter, with unknown physiological role. We reveal that Slc18b1 knock out mice has significantly reduced polyamine content in the brain providing the first evidence that Slc18b1 is functionally required for regulating polyamine levels. We found that this mouse has impaired short and long term memory in novel object recognition, radial arm maze and self-administration paradigms. We also show that Slc18b1 KO mice have altered expression of genes involved in Long Term Potentiation, plasticity, calcium signalling and synaptic functions and that expression of components of GABA and glutamate signalling are changed. We further observe a partial resistance to diazepam, manifested as significantly lowered reduction in locomotion after diazepam treatment. We suggest that removal of Slc18b1 leads to reduction of polyamine contents in neurons, resulting in reduced GABA signalling due to long-term reduction in glutamatergic signalling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927659 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1008455 | DOI Listing |
Front Microbiol
August 2025
Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa.
Phytophthora root rot caused by the hemibiotrophic oomycete, is a major biotic hindrance in meeting the ever-increasing demand for avocados. In addition, the pathogen is a global menace to agriculture, horticulture and forestry. Phosphite trunk injections and foliar sprays remain the most effective chemical management strategy used in commercial avocado orchards against the pathogen.
View Article and Find Full Text PDFImmune Netw
August 2025
Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
Arginine, a conditionally essential amino acid, orchestrates critical metabolic networks in cancer biology and immunotherapy. Abnormalities in arginine metabolism are associated with cancer initiation, progression and immune escape. Polyamines and nitric oxide are the key metabolites with multiple regulatory effects on cancer cell growth and immune cells by driving metabolic reprogramming and promoting immune evasion in cancer cells.
View Article and Find Full Text PDFESMO Open
September 2025
Aminex Therapeutics, Inc., Kenmore, USA. Electronic address:
Background: Dysregulation of polyamine synthesis has been observed in various cancer cell types. A novel approach to depriving cancer cells of polyamines involves the use of difluoromethylornithine (DFMO) to block polyamine biosynthesis in combination with AMXT 1501, a potent inhibitor of polyamine transport. Preclinical mouse tumor models showed that the combination of AMXT 1501 plus DFMO had strong antitumor activity, together with evidence of a stimulated immune response against tumors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA.
The electrocatalytic carbon dioxide (CO) reduction is challenged by the parasitic hydrogen evolution reaction (HER) especially in acidic media. Here, we elaborate that redox-active isoindigo, acting as a multifunctional co-catalyst, can pre-activate CO-bound intermediates and suppress HER upon the synergistic effects of Lewis acid-base adduct formation, intramolecular hydrogen-bond interaction, and interfacial water structure modulation. Modifying a silver catalyst with isoindigo substantially decreases the energy barrier for CO-to-*COOH conversion, which is regarded as the potential-limiting step of carbon monoxide production.
View Article and Find Full Text PDFSignal Transduct Target Ther
September 2025
Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer. Department of Biology, Faculty of Science and Technologies, University of Lille, Villeneuve d'Ascq, France. vyacheslav.lehenkyi@uni
Bone metastasis most commonly occurs in castration-resistant prostate cancer (CRPC). The TRPV6 calcium channel is absent in healthy prostate tissue, but its expression increases considerably during cancer progression. We hypothesized that cancer cells induce TRPV6 expression de novo to directly benefit from tightly regulated calcium intake via TRPV6 while providing cancer cells with a selective advantage for metastasis in the calcium-abundant niche, such as bone.
View Article and Find Full Text PDF